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Abstract

Malware infects many new computers each day. Some estimates suggest that up to 30%
of all computers are in fact infected. Malware can be transmitted by exploiting bugs
in computer software. In many cases, these bugs abused by the exploit originate from
the disparity between the computing model presented by high-level source language
and the effective model used by the low-level target language.

These bugs cannot be prevented by analyzing the source language, for example
using formal software verification tools, because they are effectively ‘introduced’ by
the process of compilation from source language to target language. Instead, they
must be prevented by strengthening the compilation process in a way that reduces the
power of low-level attackers to that of high-level attackers. Compilers that achieve
this provide ‘secure compilation’.

This work uses the notions of full abstraction and contextual equivalence to
formalize the requirements for a secure compilation scheme, and shows how secure
compilation can be achieved for MiniML, a subset of the ML language. As a prerequisite
however, the secure compilation scheme assumes that the result of compilation runs on
an architecture that provides program counter based access control, called a protected
module architecture.

The source language for this secure compilation scheme, MiniML, uses a module
system with the powerful notion of a functor to provide modularization of code. This
contrasts with the object oriented approach used by many other languages. The
compilation scheme targets the LLVM Intermediate Representation, or LLVM IR, as
a target language. A formalization of this MiniML source language and the LLVM
IR target language is presented, enabling a formalization of the secure compilation
scheme to be given as well.
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Samenvatting

Malware infecteert dagelijks nieuwe computers. Volgens sommige schattingen zou
maar liefst 30% van alle computers besmet zijn met malware. Malware kan zich
verspreiden door het exploiteren van bugs in computer software. In veel gevallen zijn
de bugs die deze malware misbruikt een gevolg van verschil tussen het computer model
dat een hoge programmeertaal aanbiedt, en het effectieve model gebruikt door de lage
niveau programmeertaal.

Zulke bugs kunnen niet ontdekt worden door analyse van de code op het niveau
de hoge programmeertaal, bijvoorbeeld met behulp van formele software verificatie
programma’s. De bugs worden namelijk ‘gëıntroduceerd’ door het compilatieproces dat
de hoge programmeertaal vertaalt naar de lage programmeertaal. In plaats daarvan
moeten deze bugs voorkomen worden door het compilatieproces aan te passen, zodat
een aanvaller op het niveau van de lage programmeertaal geen mogelijkheden extra
heeft ten opzichte van een aanvaller op het hoge niveau. Een compiler die deze garantie
bereikt, biedt ‘veilige compilatie’ aan.

Dit werk gebruikt de concepten volledige abstractie en contextuele equivalentie om
de doelstellingen van een veilige compiler formeel te omschrijven. Bovendien wordt
getoond hoe veilige compilatie mogelijk is voor MiniML, een kleine taal gebaseerd op
de programmeertaal ML. Een van de vereiste voor de correct werking van de veilige
compiler is dat het resultaat van de compilatie draait op een computer architectuur
die instructiewijzer afhankelijke toegangscontrole aanbiedt. Zo’n architectuur wordt
een veilige modulenarchitectuur genoemd.

De hoge programmeertaal gebruikt door dit veilig compilatieschema, MiniML,
biedt de mogelijkheid om modulaire code te schrijven dankzij een modulesysteem
dat de krachtige notie van een functor bevat. Dit staat in contrast met de object
geörienteerde aanpak die door vele andere hoge programmeertalen genomen wordt.
Als lage programmeertaal gebruikt deze veilige compiler de LLVM Intermediate
Representation, ofwel LLVM IR. Dit werk levert een formele specificatie van de talen
MiniML en LLVM IR aan, om vervolgens op basis hiervan ook een formele beschrijving
van de veilige compiler te geven.
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Chapter

1
Introduction

In today’s technology-driven world, computer software is used by nearly everyone on a
daily basis. The near omnipresence of malware trying to infect computers makes safety
a continuous concern for anyone involved in the creation of this computer software.
Partly, this can be done by verifying that no bugs exist in the source code of the
software, for example using verification software [JP08, JSP10].

However, a formal verification of the source code can only show that no source-level
bugs exist. After a program’s source code has been written, it is usually compiled to
a target language such as assembly that can be executed. This target language most
often is substantially different from the source language. These differences are a direct
consequence of the simplified computing model that high-level languages usually offer
to the programmer.

For example, high-level languages often hide the fact that values have to be
represented using target language concepts, saved in computer memory. Another
concern hidden from the programmer is how the flow of control, i.e. determining the
next command to be executed, is managed. In the high-level language, a function
execution is an atomic operation that can only be executed as a whole, and never
partially. This is less evident in the low-level language. The compilation process
reintroduces these concerns.

In many instances, malware exploits target-level bugs introduced by this compila-
tion process [EYP10, YJP12]. These bugs do not show up during formal verification
of the source code, as they are only introduced when the abstract computing model
used on source-level is traded in for the concrete target-level computing model.

To provide security, the compilation process itself must be strengthened, so that
it guarantees that any source-level security guarantees are preserved throughout the
compilation step from source language to target language. If this is achieved, then
any software that is attack-free on the source-level is attack-free as well on the target-
level. A compilation scheme able to provide these guarantees is rightly called secure.
Effectively, such a compilation scheme reduces the capabilities of a target-level attack
to those of a source-level attack. The aim of this thesis is to describe how secure
compilation can be achieved for a functional language that implements an ML-style
module system.

1



1. Introduction

1.1 Secure Compilation

Software programs or libraries are usually written in a source language, to be followed
by compilation to a target language. Often, the main reason for this distinction is
that it is easier to reason about the program in the source language than at the target
language. This is because the source language works at a higher level of abstraction
than the target language.

For example, a high-level source language such as Java abstracts away all concerns
a programmer might have about how to handle computer memory. The representation
of an object defined by the programmer in memory, as well as the location of this
object is all hidden away. Effectively, the source language takes the burden of handling
these daunting tasks away from the programmer.

This is a form of data abstraction: objects are described by their properties and the
functionality they offer, not by their implementations. Here data abstraction concerns
hiding the implementation of basic types by bits in memory, but most high-level
languages offer the same software principle by allowing abstract data types. An
abstract data type is implemented using basic types offered by the source language,
but whenever a value of this type is used, only its described properties and abstract
functionality are available.

Data abstraction is part of an abstraction paradigm provided by a source language,
called information hiding. Information hiding happens any time that some value,
function or datatype is implemented, but its use is restricted: it is hidden.

Another abstraction paradigm that the source language can provide is called
modularization. Modularization offers a way to group closely related functionality
together. For example, in Java this would correspond to a class or a group of classes,
called a package.

Modularization and information hiding are closely related and affect each other to
allow for encapsulation, where the internal representation is hidden so that it influences
only a small, identifiable region of the program [Pie02]. The information hiding mech-
anisms of Java for example, the private, public, protected and default access
modifiers, differ from one another in how they handle the different modularization
mechanisms: classes and packages. Public functionality can be used everywhere,
private functionality only within the same class, whereas the default access modifier
allows access from any class within the same package.

These abstractions not only make it easier for the programmer to reason about the
correctness of software, they also provide a way to describe security properties. When
a value or function is marked with an access modifier, any programmer rightly assumes
these access rights are indeed enforced. A value marked private can only be read of
modified by certain parts of the code. In security terms these access modifiers provide
confidentiality and integrity. Even formal verification tools to keep the software free
from bugs assume the enforcement of these access rights.

The target language, however, does not always offer these abstractions. For
example, when executing software, the values created by this software must be saved
in memory, using a certain representation. The platform on which the target language
runs might not provide access control for this memory, which means values saved in
memory might be readable by any code running on the platform.

Software code must be saved somewhere as well, and doing this might make it

2



1.2. Protected Module Architecture

possible to corrupt control flow, for example by overwriting a return address [EYP10].
Such an attack might result in executing functionality that was supposed to be hidden,
because the atomicity of function execution can be broken.

Full Abstraction
Secure compilation is a compilation process that does preserve these source-level
security properties when compiling to the target language. In this work, this property
of a compiler is formalized as full abstraction [Aba99]. Full abstraction uses the idea
of contextual equivalence to formalize security guarantees.

Contextual equivalence is an equivalence relation on programs. The contextual
equivalence relation O1 ' O2 expresses that two programs O1 and O2 are indistin-
guishable from each other, even when running them in combination with any other
program OC called the context. Informally, this corresponds with there being no
observable differences between O1 and O2. Formally, O1 ' O2 means:

∀OC : OC [O1]→ c ⇐⇒ OC [O2]→ c

where OC [.] is a program where a certain component is unspecified. OC [O1] is the
program that results from linking OC with O1, where O1 is used as the unspecified
component.

Note that contextual equivalence does indeed imply security guarantees are en-
forced. Suppose that two programs O1 and O2 differ only by a value that is supposedly
confidential. If it were possible for any context to read or modify this value, then this
context provides a counter example for the statement that two programs that use a
different hidden value are contextually equivalent.

As contextual equivalence implies that security guarantees are enforced, secure compi-
lation can be formalized as providing full abstraction, meaning contextual equivalence
is preserved and reflected when compiling a program O1 to its corresponding target
language program O↓1 . Formally:

O1 ' O2 ⇐⇒ O↓1 ' O↓2
In the remainder of this text, the program O1 or O2 presents the secure code, an

encapsulated entity for which some security guarantees hold. The secure compilation
of this encapsulated entity is called the self-protected module or SPM. The secure
code is provided and compiled to an SPM, and is linked to an insecure target level
context O↓C

1.2 Protected Module Architecture

As explained in Section 1.1, a secure compilation scheme is a compilation scheme that
preserves source level security guarantees in the target language.

The secure compilation scheme compiles security sensitive parts of an application
into a self-protected module or SPM [iDRG]. Such an SPM operates in isolation of
the other parts of the application. The high-level security guarantees of an SPM with
respect to the other parts of the application (i.e. the insecure context) are preserved

3



1. Introduction

in the low-level. In other words, any part of the application outside the SPM can only
operate on the SPM in ways specified by the SPM ’s public high-level API.

Such a preservation of security guarantees is only possible if some form of access
controlled memory is available. Indeed, if no protection of any memory where possi-
ble, no confidentiality of values within the SPM with respect to other parts of the
application could ever be preserved, as values would always be readable directly from
memory.

An SPM requires a specific access control model: SPM s are split into a protected
code and a protected data section. Protected code contains the security sensitive part
of the application’s code. All other memory, containing data and code corresponding
to other parts of the application, is considered to be the unprotected memory.

Metadata in the SPM also specifies a list of entry points. This list specifies the
only memory locations in the protected code section to which instructions located in
unprotected memory can jump.

The semantics of the access control required by the SPM are summarized in
Fig. 1.1. This work uses the same memory access control model as given by Agten et
al. [ASJP12]. As shown by Patrignani et al. [PCP13] the same access control model
can be used to provide secure compilation for more advanced concepts object oriented
programming concepts.

From \To Protected Unprotected
Entry Point Code Data

Protected r x r x r w r w x
Unprotected x r w x

Figure 1.1: Program counter based access control semantics as specified in Agten et
al. [ASJP12].

The architecture running the SPM enforces that execution can only enter the SPM
by jumping to an entry point. Instructions in unprotected memory are not allowed to
jump to other memory locations inside protected memory than those mentioned in
the entry points list. This protects the atomicity of function execution with respect
to the insecure code. Instructions inside the protected code section can jump to any
other memory location in the protected code section or any location in unprotected
memory.

Besides being limited to jumping to protected code locations listed in the SPM ’s
entry point list, instructions in the unprotected memory are not allowed read or
write access to any location in the protected code or protected data section. Instead,
instructions in unprotected memory can only read from or write to other unprotected
memory. Instructions in the protected code section can read from or write to any
memory location in unprotected memory, as well as memory locations inside the
protected data section.

To enforce such access control semantics, the SPM must execute on an architecture
that provides program counter based access control [iDRG] or PCBAC. Such an
architecture is called a Protected Module Architecture. The term program counter
based access control refers to the fact that the validity of a memory access depends on
the current location of the program counter.

4



1.3. Thesis Structure

There are already a few architectures that support these program counter based
access control semantics, or a variation on them [SP12, ASAP13, NAD+13, MAB+13].

1.3 Thesis Structure

This thesis aims to show how secure compilation can be achieved for a functional
language that implements an ML-style module system. For this, a source language,
MiniML, is defined as a subset of the functionality provided by the ML programming
language.

A target language to which MiniML will be compiled has to be chosen as well. In
this thesis, the LLVM Intermediate Representation is used. The LLVM Intermediate
Representation is a language used in the LLVM compiler project. As a language
it is only slightly more abstract than assembly, and it is specifically designed as
an intermediate step in the compilation of different high-level source languages to
assembly.

This offers the benefit that compilation to the intermediate language can be per-
formed, and afterwards transformations can be done on the intermediate language to
optimize it for different architectures. Afterwards, the LLVM Intermediate represen-
tation can be compiled to assembly code for a specific architecture, for example an
architecture providing the necessary access control sketched in Section 1.2.

The following list gives a roadmap of how each chapter contributes to the thesis goal
of showing how secure compilation of a language with an ML-style module system is
possible.

• Chapter 2 describes a first version of the MiniML language, mimicking some
of the basic functionality provided by the ML language and its module system,
using an example: An implementation of a Caesar cipher.
It also describes the target language, LLVM IR, and shows how compilation
from MiniML to LLVM might normally occur.
It concludes by describing the security issues that must be solved and shows
how secure compilation would address these using the example.

• Chapter 3 gives a formalization of both the MiniML source language and the
LLVM IR target language. It then formally describes a secure compiler for this
first version of MiniML.

• Chapter 4 introduces some more advanced ML concepts to MiniML. Specifically,
higher order functions and functors.

• Chapter 5 extends the formalization of MiniML given in Chapter 3 to include
the advanced concepts that were introduced to MiniML in Chapter 4.
It proceeds by extending the formalization of the secure compiler of Chapter 3.

• Chapter 6 sketches how full abstraction of a compilation scheme can be proven.

• Chapter 7 gives an overview of possible improvements or extensions of the work
presented here. It also formulates a conclusion to this thesis.

5





Chapter

2
A Compilation Example

This chapter firstly informally describes the MiniML source language (Section 2.1),
a subset of the ML language whose syntax and semantics are reminiscent of those
of Standard ML. Section 2.2 then introduces an example program (a Caesar cipher
implementation) that will be used to show the secure compilation scheme. This
chapter continues by describing the LLVM intermediate language to which the first
translation occurs (Section 2.3). This chapter concludes by translating the earlier
proposed example program, showing the resulting LLVM code (Section 2.4).

2.1 MiniML

The ML language is a functional programming language that is well known for its
module system. This module system aims to group data and code together into
coherent entities, called modules.

A structure is the most basic type of module. It can be defined using the struct
construct and provides a set of bindings for types, values and functions. A structure
specifies a name for the binding and the corresponding value, called implementation.
Structures provide the possibility of grouping related code and data, fulfilling the
need of modularization in software. However, the need for data abstraction is not yet
fulfilled. Listing 2.1 shows how a dictionary of strings to strings might be implemented
by a module.

Listing 2.1: An example structure showing the definition of a dictionary in ML.
1 structure Dictionary =
2 struct
3 type dictionary = (string * string) list
4 val emptyDictionary = []
5 fun insert d, x, y = (x,y)::d
6 end

Listing 2.1 firstly defines a type dictionary, which is defined to be a type synonym
for a list of string pairs, a value representing the empty dictionary (emptyDictionary)
and a function for inserting data into the dictionary (insert).

As it stands, the dictionary type is a type synonym for lists of string pairs, and
any such list could be used where a dictionary is expected. However, the concept of a
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dictionary does not require users to know that the dictionary type is implemented as
a list of string pairs. According to the principle of data abstraction, it is favorable to
hide this information from the user of the dictionary module.

Here the idea of a signature comes into play. A signature groups a set of types,
values and functions without providing an implementation. It provides a way of
abstracting over structures that implement the same logical concept using a different
implementation. A possible signature for dictionaries is shown in Listing 2.2.

Listing 2.2: An example signature showing the declaration of a dictionary in ML.
1 signature DICTIONARYSIGNATURE =
2 sig
3 type dictionary
4 val emptyDictionary : dictionary
5 val insert: dictionary -> string -> string -> dictionary
6 end

A signature guarantees that two implementations of the same logical concepts
are interchangeable for each other by standardizing the way an implementation
communicates with the other code. It can also abstract the fact that the current
implementation for dictionaries uses lists, as well as obscuring any helper methods
that the specific implementation defines in order to simplify its internal workings.
This last functionality of a signature is a way to perform information hiding.

The MiniML fragment discussed here was chosen to incorporate only the idea of
structures, more complex language features will be added later (Chapter 4).

2.2 A Cipher In MiniML

Listing 2.3 presents a simple example program that consists of the definition of a
signature that represents symmetric cyphers, a concept used in cryptography. This
example was chosen since the modules related to cryptography are usually under more
scrutiny with regards to the privacy of their internal values. The code in Listing 2.3
defines a signature SYMMETRICCIPHER. This signature describes the common traits
between modules that implement a symmetric cipher. In order to implement a
symmetric cipher, one must have a credential, i.e. the key, and two functions, encrypt
and decrypt, which take data and credentials. The encrypt function takes the raw
data and encodes it in a way only those with knowledge of the correct credentials can
later use the decrypt function to transform the encoded data back into the raw data.

Listing 2.3: Example of a security sensitive module specifying and implementing a
symmetric cypher.

1 signature SYMMETRICCIPHER =
2 sig
3 type cred
4 val newcredentials : cred
5 val encrypt: int -> cred -> int
6 val decrypt: int -> cred -> int
7 end
8
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9 structure Caesar :> SYMMETRICCIPHER =
10 struct
11 type cred = int
12 fun newcredentials = rand
13 fun encrypt a cred = (a + cred)%26
14 fun decrypt a cred = (a - cred)%26
15 val seed = 3
16 fun rand = time.now * seed
17 end

From line 8 of Listing 2.3 onwards the definition of a structure called Caesar is
given. Caesar implements the SYMMETRICCYPHER signature. In this context, Caesar
provides the newcredential, encrypt and decrypt functions. For internal use it also
possesses the necessary characteristics of a pseudorandom number generator, namely a
seed value and a rand function that provides a pseudorandom number. It is necessary
to hide the seed value from users since this would allow attackers to predict the output
of the pseudorandom number generator.

The Caesar structure is forced to conform to the signature SYMMETRICCIPHER by
means of ascription(:>). Ascription not only forces the module to implement all the
necessary elements of the signature, but it also restricts the means of interaction with
the module to those elements that are explicitly mentioned in the interface. It is this
notion of ascription that dictates what it means for this module to be secure.

In this case, the ascription of the Caesar structure with signature SYMMETRICCIPHER
is done opaque (:>), as opposed to transparent (:). The difference between opaque

and transparent ascription is as follows:

Opaque ascription Ascribing a structure using opaque ascription :> means any
declaration, be it type or value, in the signature must have a corresponding
definition in the structure. The ascription hides any val or fun definition for
which there is no corresponding val declaration inside the signature.
For types declared in the signature, but without a specific implementation, the
implementation of the type is unspecified. In other words, for code outside the
structure, the type and its implementation are not synonymous.

Transparent ascription Ascribing a structure using transparent ascription : hides
the same definitions as opaque ascription.
However, for types declared in the signature, but without a specific implementa-
tion, the implementation that the structure provides for the type is specified. In
other words, for code outside the structure, the type and its implementation are
synonymous, and interchangeable.

Concretely, to be secure, this module hides its rand function and its seed value
from any outside code, only allowing the code internal to the structure to access
this value or call the function. Because the ascription is opaque, the implementation
of cred as an int is hidden as well. This makes it impossible for code outside the
structure to use a value of type int where a value of type cred is expected, even
though they are type synonyms inside the Caesar structure.
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2.2.1 Compilation of MiniML

Compilation of MiniML reflects the compilation of the ML language. As in ML, the
MiniML compilation process takes a MiniML program as a collection of files that
contain signatures and structure definitions. Conventionally, MiniML processes each
file in order of the collection, and separately, as a unit of compilation.

Within each file it processes the definitions in the order that they are listed in the
file. It expects the resulting order in which it processes the definitions to correspond
to a directed acyclic graph or DAG. This means that a definition can only use elements
that were defined before its own definition.

When talking about the secure compilation of MiniML, the remainder of this text
will expect that a file containing all secure signature and structure definitions is passed
to the compiler first. This represents the secure module or SPM, which contains all
secure code.

Next, all code representing the context is compiled separately and later linked
to the result of the compilation of the secure code. As a result, the definitions of
structures in secure code can not directly depend on elements that are defined only
later, in the insecure context.

2.3 LLVM and the LLVM Intermediate Representation

This section introduces the LLVM and its intermediate representation. It also specifies
the expected LLVM Intermediate Representation code for the example in Listing 2.3.

2.3.1 LLVM

LLVM, short for Low Level Virtual Machine is the name of a project providing many
different and closely affiliated utilities concerned with the compilation process. Created
by Chris Lattner [Lat02] in 2000, the project was picked up by Apple and work on
the LLVM project has continued up to this date.

The main sub-project of LLVM is the LLVM Core, which combines code generation
and optimization for many platforms. Because the generation of code for a specific
platform and the optimization of code is generally very difficult work, the LLVM Core
is built around the LLVM Intermediate Representation, or LLVM IR.

This intermediate representation attempts to provide a shared abstraction that the
compilers of many source-level languages can use. The idea is that any source-level
language can be compiled to the LLVM IR, using the LLVM project as a backend for
its own compilation. Once a source-level program is compiled to LLVM IR, any form
of optimization can be done on the LLVM Intermediate Representation, and thus
optimizations are shared between the different source-level languages.

When all required optimizations are performed, it is possible to compile the
intermediate language into machine code and perform linking of all necessary code.
Any special modification necessary to run on specific target platforms is shared across
the different source languages as well, because the code generation uses the LLVM IR
as its input.

Providing a compiler for a source-level language is now confined to providing a
compilation to the LLVM IR. When such a compiler exists, the full power of the
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LLVM optimizer is accessible for the source language, and compilation is possible to
every one of the multitude of platforms compatible with LLVM.

2.3.2 LLVM IR

This work uses LLVM as a backend. The secure compiler for MiniML will translate
MiniML code into the LLVM Intermediate Representation. In order to focus on the
security of the compilation, the more aggressive optimization capabilities of LLVM
will not be used.

It is possible to write a program in this LLVM Intermediate Representation using
one of three different and equivalent encodings, according to the LLVM Language
Reference [LA05]:

• A bitcode format

• Textual assembly language

• A symbolic representation, manipulated by the LLVM API

This text will use the textual assembly language as representation for LLVM IR
programs, because this makes examples and results more understandable and human
readable. While it is possible to generate LLVM IR programs using the LLVM API,
this work chooses to generate the human readable intermediate code itself, because it
offers more direct control over the resulting translation.

The benefit of LLVM Intermediate Representation is not limited to the points
mentioned above. The LLVM Intermediate Representation works at a higher level of
abstraction than standard assembly does. Some important additional aspects make
the intermediate representation used by LLVM of a higher level of abstraction than
standard assembly code:

Type System More information about the program is captured by LLVM than when
using regular assembly, using LLVM’s type system. This type system helps the
optimalization process.
The type system, as given by the LLVM Language Reference [LA05] consists
of the types shown in Fig. 2.1. Not all types are shown, the vector type and
opaque types are omitted.
A shorthand for types can be defined using %Name = type.

Register Limitations The LLVM Intermediate Representation abstracts away the
fact that real architectures have only a given amount of registers. Instead, one
can write a program assuming an infinite amount of virtual registers. This results
in many more variables in use than available registers. In a later compilation
stage this consequence is remedied using the technique of spilling. Variable
spilling occurs by mapping the variables in use to the smaller set of available
registers, saving all variables that could not be assigned to a register in RAM
memory in the stack.
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LLVM Basic Types
iN Arbitrary width integer. The width is specified by N.
Void The void type. Like the void type in Java, this represents no value.

The void value has no size.
type∗ The pointer type. It specifies a specific memory location. The

memory location must contain a value with the correct type,
as specified by type. It is considered by the LLVM Language
Reference to be a basic type.

label The label type. This specifies a pointer to a label. This is
equivalent to i8*.

LLVM Derived Types
[N x type] The Array type. This represents N elements of type type ordered

sequentially in memory.
{typelist} The structure type. This represents a sequence of values in memory

of type type. The elements are in the order of the list. The list is
comma separated.

type1 (typelist) The function type. This represents a function that returns a value
of type type1 , and takes arguments with the types specified in the
type list.

Figure 2.1: The LLVM types, with vector types and opaque types omitted.

SSA For optimization purposes, the LLVM IR adheres to the static single assignment
paradigm, or SSA. This implies that every register can be assigned a value only
once.
For example, the code in Listing 2.4 reassigns the value saved in register x from
3 to 4. In SSA, this would be represented by Listing 2.5.

Listing 2.4: Reassigning a variable.
Block:

%x = 3;
; br i1 %cond, label %Cond, label %Ret
Cond:

%x = add i32 %x, 1;
Ret:

ret i32 %x;

Listing 2.5: Code in SSA form.
Block:

%x1 = 3;
; br i1 %cond, label %Cond, label %Ret
Cond:

%x2 = add i32 %x1, 1;
Ret:

ret i32 %x2;
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This essentially provides a versioning postfix to the variable identifier. The
problem with SSA becomes worse however if the modification of x depends
on control flow. For example by uncommenting the conditional statement in
Listing 2.4, the eventual value of \%x depends on the value of \%cond.
The return statement in Listing 2.5 should now return either %x1 or %x2. But
how can the code in SSA form decide which of the two registers should be
returned? LLVM IR solves this problem by providing the Φ function [AP03].
The Φ function ‘merges’ a set of variables. It assigns a new variable the value
of one of a number of old values, where the choice of the old value depends on
the control flow. In Listing 2.6, the SSA-representation of Listing 2.4 with the
condition uncommented is shown.

Listing 2.6: Code in SSA form with function.
Block:

%x1 = 3;
br i1 %cond, label %Cond, label %Ret

Cond:
%x2 = add i32 %x1, 1;

Ret:
%x3 = phi i32 [%x1 Block] [%x2 Cond]
return %x3;

2.3.3 Translating MiniML concepts to LLVM

Compiling from MiniML to LLVM IR means the high-level abstractions made in
MiniML, for example signatures and structures, must be mapped to lower-level
constructs that are available in the LLVM Intermediate Representation. This section
presents these different mappings.

File A file with ML structures and signatures inside it is a separate unit of compilation.
Its signatures and structures are type checked and compiled together. When
a file is compiled, there can only be dependencies on values that were defined
in an earlier unit of compilation, since the compilation of MiniML expects a
directed acyclic graph, as explained in Section 2.2.1.
LLVM already provides the concept of a module as a separate unit of compilation.
This means each LLVM module is compiled to a single different object file. Firstly,
an LLVM module declares which external functions will be provided by other
code, and then continues by defining and implementing its own code and data.
These definitions and external references are compiled into a single object file.
LLVM poses no restrictions on the access of data and functions within a single
module. This is poses no problem for files containing multiple secure structures.
Since they are first type checked together before being compiled together, a secure
structure will never access a hidden component of another secure structure.
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The access of data and functions from within other modules is restricted by
LLVM: the object file to which a module is compiled is accompanied by a link
table. This link table specifies which methods are defined and made externally
visible, which is used to match the declaration of external functions with their
implementation in other object files. The link tables represent what other code
knows about the definitions contained within the compiled module.

Structures Structures are a collection of types and value definitions. As such they
can be compiled by compiling every one of their components.
Structures also provide namespaces: 2 structures str1 and str2 can both define
a value t without resulting in a clash of names. When compiling structures by
compiling every one of their components, this situation should not introduce
a clash of names either. This is guaranteed by identifier prefixing: When a
component x within str1 is compiled, the compilation is not bound to x but to
str1.x instead.

Functions LLVM provides the concept of a function as a set of basic blocks of code.
These LLVM IR functions allow the programmer to modify the visibility of a
function using the linkage keyword.
When linking the object files that result from the compilation of different
modules, LLVM looks for the implementation of externally declared functions
in the different object files, keeping into account whether or not the code was
in fact declared to be visible outside the module. It is possible to map ML
functions directly to their LLVM counterpart.

Signatures While structures can be mapped directly onto the concept of a module
in LLVM, the information provided in signatures will mainly affect metadata in
the resulting code or influence the specific implementation of different elements
inside the modules.
When a structure is opaquely ascribed, or sealed by a signature, we must make
sure that the values and functions defined in the structure but not specified
in the signature are not externally visible. The first step in protecting these
internal functions consists of marking these members as private in the module
corresponding to the ML structure. This will filter these members from the
object files link table.

Value The translations of a value is a getter function without arguments. This is
necessary because

• The value might not be defined as a constant, but as the result of a call
to a pure function. This does not violate the constraint that a value must
represent an immutable value, because the result of a pure function call
will always result in the same result. When translated, this function must
be executed however and the result must be passed.
• These values are readable by any code. As shown later, when it is read by

the insecure context, certain precautions must be taken. This is impossible
when values are translated to constants.
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2.4 Translation Example: The Caesar Cipher

In order to study the compilation scheme, the example ML code in Listing 2.3 is
translated to LLVM IR.

The code given to the compiler is treated as a single file containing all secure or
trusted structures. In the case of Listing 2.3, this consists of only the Caesar structure.
As mentioned in Section 2.3.3, this is compiled to a single LLVM module.

Before discussing the translation of Listing 2.3, the security concerns that MiniML
introduces have to be discussed.

2.4.1 MiniML-specific security concerns

Ordering of Fields and Module Expressions

The necessity of reordering field definitions in a target-level object was shown by
Agten et al. [ASJP12]. In MiniML the same argument holds, not only for fields, but
for the order of structure definitions as well.

The order in which structures and signatures are defined, or the order of fields
within a structure is to a large extent unimportant for the behavior of a MiniML
program. As long as no structure is used before it is defined, differently ordered
MiniML programs are contextually equivalent. The order of field definitions within a
structure has no result on the behavior of the program either.

The ordering of structure or field definitions in LLVM IR might be leaked however,
when examining the pointers to different fields. If contextually equivalent but differ-
ently ordered MiniML programs would be translated to differently ordered LLVM IR
programs, the results would not be contextually equivalent.

To guarantee full abstraction, it is thus necessary to ensure that all contextually
equivalent but differently ordered MiniML programs result in the same ordering
of definitions in LLVM IR. This can be accomplished by alphabetically ordering
structures, and the fields within their structures, when outputting the LLVM IR
program.

Stack Switching

As described by Agten et al. [ASJP12], when code execution switches from protected
code to unprotected code or back, the security of the run-time stack must be protected.
Therefore the stack is split into two parts, the secure stack and the insecure stack. These
are respectively located in secure and insecure memory. The following precautions, as
described by Agten [ASJP12] are then taken:

• When the secure code is entered in an entry point, the stack pointer is modified
to point to the secure stack, whose location is saved in a field in the data section.
This field is called the shadow stack pointer. There is another field reserved in
the data section as well, to keep track of the value of the stack pointer before
modification.

• At each exit point, the stack is restored to its previous address in unprotected
memory, and the location of the shadow stack pointer is updated.
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Because this is only necessary when functions are called from the unprotected code,
these security measures are taken care of by a low-level stub that wraps around the
low-level translation of the high-level publicly available function. This stub will then
forward execution to an internal function (which is not publicly available) which will
strictly focus on the low-level implementation of the high-level function itself. This
internal function can thus assume that any necessary security precautions are taken.
Within the secure code, calls to these internal functions can happen directly, without
passing through the stub.

Register Clearing
Any communication in MiniML normally only occurs through information passed
along by returns and method calls. In the case of low-level architecture however, all
communication occurs through the unprotected memory, through flags and through
the CPU registers. This means that a low-level attacker can try to perform side
channel communication.

In order to prevent the leaking of protected data through side channels, it is
important to ensure that the information passed through unprotected memory, flags
and registers is restricted to that information being passed by the returns and method
calls in MiniML. Thus, any callback or return to untrusted code must:

• Clear the flags

• Clear the registers, except those being used to pass a parameter or a return
value.

If these registers and flags, which were possibly modified by the protected code,
are not reset when returning execution to unprotected memory, code running in
the unprotected memory will be able to read the values in these registers and flags,
breaking confidentiality. The code could even modify these values, resulting in a
modification of control flow if execution is later returned to the protected code while
expecting these values to be uncorrupted.

However, since the LLVM Intermediate Representation does not allow multiple
assignments to the same registers, it is impossible to clear a register simply by
overwriting its value. Furthermore, the LLVM IR does not know how many registers
it can use, instead assuming an infinite amount of registers, as mentioned earlier. This
means that clearing these registers must happen later on in the compilation process,
introducing an extra LLVM pass.

This clearing can once again happen inside the stub, keeping the internal functions
free from any code related to security concerns.

Opaque types
The MiniML language allows a programmer to define his own types using the type
keyword. Taking another look at the Dictionary example of Listing 2.1, this happens
in line 3. The module’s internal representation of a dictionary is a list of string pairs,
but clearly this is some internal choice that the programmer does not want to make
explicit, which is why the type synonym dictionary is kept opaque. This can be
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seen in Listing 2.2, line 3, where the external specification of a type is not revealed to
be a list of string pairs.

This is a means of information hiding, if someone were to later rewrite this
dictionary structure in such a way that its internal representation changes, e.g. it
becomes a pair of string lists as in Listing 2.7, this would be a perfectly valid change.
This change should not result in any changes to the external code, since the specific
implementation choice for the dictionary type was not made explicit.

Listing 2.7: An alternative structure defining a dictionary.
structure Dictionary =

struct
type dictionary = (string list * string list)
val emptyDictionary = ([],[])
fun insert((fst,snd), x, y) = (x::fst, y::snd)

end

Even more so, one would expect the two programs/modules to be contextually
equivalent! However, clearly, if no checking is performed within functions expecting
something of type dictionary, a low-level attacker could discriminate between the
two using the following tactic: call a function expecting a dictionary argument with
a self-created list of string pairs. If it gives the expected results, the dictionary
implementation being used is the one given in Listing 2.1. If not, it is the module
described in Listing 2.7, expecting a pair of string lists. This breaks contextual
equivalence.

The code must assure that any object, passing as an argument of type dictionary,
was in fact created by the module code itself (using the emptydictionary method).
If not, it should raise an error (even if the object has the correct type according to
the synonyms) in order to prevent an attack on contextual equivalence in the same
spirit as the one described above.

This restriction can be enforced by a technique called masking, introduced by
Patrignani et al. [PCP13]. Masking works by ensuring that the code creating a
dictionary never returns a pointer to this dictionary itself, instead saving this dictionary
pointer in an internal list located within protected memory. The index in this list can
then be returned and used as a mask for the real object. Once again, this masking
can be done within the stub function that wraps around the internal function that
returns the value.

When a stub represents a high level function that expects an argument of an
opaque type, it will receive the index of the desired value in the internal masking list.
It can use the internal masking list to retrieve the pointer associated with the index,
and to check whether it points to a value of the right type.

Entry points
Instructions in the insecure code can only jump to memory locations marked as an
entry point by the SPM ’s metadata. This compilation scheme adds an entry point
to the SPM for every function available in the high-level language. Because the
security checks are performed inside the stubs, it might seem logical to use the memory
locations of their first instructions as the entry points for the SPM.
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However, because the size of these functions can be derived from the distance
between two successive entry points, and this size might leak information about the
SPM, the memory locations of these stubs are not listed as entry points. Instead, a
small entry function that calls these stubs is created, in the low-level this corresponds
to a simple tail call. These small entry functions can be grouped together in the
secure code section, and take up a constant amount of space. The memory locations
corresponding to these entry functions can then be listed in metadata as entry points
for the SPM.

2.4.2 Translation
The translation to LLVM Intermediate Representation is given in code in Listing 2.8.

Listing 2.8: LLVM IR for the example.
1 %int = type i64
2 %Caesar.cred = type {%int}
3
4 declare i8* @malloc(%int)
5 declare void @free(i8*)
6 declare void @exit(i32)
7
8 define %int @Caesar.decrypt(%int %arg0, %int %arg1) {
9 %ret = tail call %int @Caesar.decrypt_stub(%int %arg0, %int %arg1)

10 ret %int %ret
11 }
12
13 define %int @Caesar.encrypt(%int %arg0, %int %arg1) {
14 %ret = tail call %int @Caesar.encrypt_stub(%int %arg0, %int %arg1)
15 ret %int %ret
16 }
17
18 define private %int @Caesar.newcredentials() {
19 %ret = tail call %int @Caesar.newcredentials_stub()
20 ret %int %ret
21 }
22
23 define private %int @Caesar.decrypt_stub(%int %arg0, %int %arg1)

noinline {
24 %arg1int = call %int @unmask(%int %arg1)
25 %arg1type = call %int @unmasktype(%int %arg1)
26 %check1 = icmp eq %int %arg1type, 4
27 br i1 %check1, label %Continue, label %Error
28
29 Continue:
30 %arg1ptr = inttoptr %int %arg1int to %Caesar.cred*
31 %ret = call %int @Caesar.decrypt_internal(%int %arg0, %Caesar.cred*

%arg1ptr)
32 ret %int %ret
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33
34 Error:
35 call void @exit(i32 -1)
36 unreachable
37 }
38
39 define private %int @Caesar.decrypt_internal(%int %a, %Caesar.cred* %

credptr) {
40 %loccred = getelementptr inbounds %Caesar.cred* %credptr, i32 0,

i32 0
41 %cred = load %int* %loccred
42 %x = sub %int %a, %cred
43 %y = urem %int 26, %x
44 ret %int %y
45 }
46
47 define private %int @Caesar.encrypt_stub(%int %arg0, %int %arg1)

noinline {
48 %arg1int = call %int @unmask(%int %arg1)
49 %arg1type = call %int @unmasktype(%int %arg1)
50 %check1 = icmp eq %int %arg1type, 4
51 br i1 %check1, label %Continue, label %Error
52
53 Continue:
54 %arg1ptr = inttoptr %int %arg1int to %Caesar.cred*
55 %ret = call %int @Caesar.encrypt_internal(%int %arg0, %Caesar.cred*

%arg1ptr)
56 ret %int %ret
57
58 Error:
59 call void @exit(i32 -1)
60 unreachable
61 }
62
63 define private %int @Caesar.encrypt_internal(%int %a, %Caesar.cred* %

credptr) {
64 %loccred = getelementptr inbounds %Caesar.cred* %credptr, i32 0,

i32 0
65 %cred = load %int* %loccred
66 %x = add %int %a, %cred
67 %y = urem %int 26, %x
68 ret %int %y
69 }
70
71 define private %int @Caesar.newcredentials_stub() noinline {
72 %credptr = call %Caesar.cred* @Caesar.newcredentials_internal()
73 %credint = ptrtoint %Caesar.cred* %credptr to %int
74 %ret = call %int @mask(%int %credint,%int 4)
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75 ret %int %ret
76 }
77
78 define private %Caesar.cred* @Caesar.newcredentials_internal(){
79 %rand = call %int @Caesar.rand()
80 %ptr1 = call i8* @malloc(%int 16)
81 %ptr = bitcast i8* %ptr1 to %Caesar.cred*
82 %locval = getelementptr inbounds %Caesar.cred* %ptr, i32 0, i32 0
83 store %int %rand,%int* %locval
84 ret %Caesar.cred* %ptr
85 }
86
87 define private %int @Caesar.rand_internal() {
88 %t = call %int @Caesar.seed()
89 ret %int %t
90 }
91
92 define private %int @Caesar.seed_internal() {
93 ret %int 3
94 }

This code, that implicitly is part of a module, consists of a list of global values,
denoted by the @ sign. Every value, be it a global function or a global variable, has a
linkage type associated with it. Linkage types control the accessibility of of variables
and functions. The two linkage types in use are private, which makes a value only
accessible by objects inside the same module, and the default linkage type, external.

The code in Listing 2.8 specifies 11 different global values, corresponding to the 5
definitions in the Caesar structure, their three stubs and the three entry functions.
It also defines one type, corresponding to the cred type. As mentioned earlier, the
ordering of these functions is alphabetical.

cred type To start the translation, a type definition for the cred type is given on
line 2. It is represented as a structure, where first the effective structure is
represented, and then an %int is reserved to keep track of the type. Here, the
number 4 is chosen to correspond with the cred type.

encrypt & decrypt The first translated functions are the encrypt en decrypt func-
tions. The translation starts with the definition of @Caesar.decrypt_internal
on line 39 in the code of Listing 2.8, and that of @Caesar.encrypt_internal
on line 63. Both definitions use linkage type private.
Since these functions are available in ML for untrusted code, stubs are provided
where security precautions can be made. These can be found on lines 23-37 and
47-61. The definitions of these stubs take only %int values as arguments: these
are either real integer values, or masked indices.
The stubs are marked as private as well, and entry point functions are created
that perform a tail call to these stubs. These can be seen on lines 8-11 and 13-16.
These entry points specify no linkage type explicitly, which means linkage type
external is used.
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When calling these functions from insecure code, execution starts at the entry
functions, as their memory locations are listed as entry points by the SPM.
These entry functions perform a tail call to the stubs.
The stubs know that the second argument to the internal function must be of
type %Caesar.cred*, so they use the @unmask function to get the corresponding
%Caesar.cred* value, and type check it.
The definitions of the internal functions take one %int and one %Caesar.cred*
as argument. They can read the integer value that this cred represents by
accessing the representation, using the getelementptr function in combination
with the pointer %Caesar.cred*.
The body of the internal function uses the effective values in two calls to
arithmetical assembly functions and returns the result.

newcredentials Next is the newcredentials function. An entry function for this
publicly available function is defined on lines 18-21, performing a single tail call
to the stub. On lines 71-76 in the code of Listing 2.8, a stub for the function is
defined and its return type is declared to be %int, since it returns an index in
the masking list.
On line 72, the stub calls the internal function, which returns a pointer value
of type %Caesar.cred*. The stub casts this pointer to an %int, and saves the
%int as well as type information in the masking list using a call to @mask. This
returns an index which can be returned to the context.
The body of the internal function @Caesar.newcredentials_internal im-
plements the functionality of the ML newcredentials function. @Caesar.
newcredentials_internal performs a call to the rand function, saving the
resulting return value and creating a pointer to it. This pointer is returned.

rand The function rand is defined starting line 87 and onwards in Listing 2.8. As
the structure Caesar is opaquely ascribed by the signature SYMMETRICCIPHER,
and the value rand is not specified in this signature, it should be hidden from
any outside components. This means the linkage type is set to private It also
follows that no stub nor entry function is necessary for the rand function.
In its body, it returns the value of the seed.

seed The value seed is translated to a getter function. For the same reasons as the
variable rand, its linkage type is set to private.
The definition of seed can be seen on lines 92-94 in the code of listing Listing 2.8.

2.5 Lessons learned

This chapter gave an introduction to the MiniML language, which was chosen because
of its special module system and how it specifies security aspects. Formalizing the
MiniML language semantics will be the topic of Chapter 3.

Furthermore, LLVM and its intermediate representation was introduced as the
target language for the described compilation scheme.
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2. A Compilation Example

The chapter proceeded by describing the compilation scheme, showing how struc-
tures can be mapped to LLVM modules, followed by a translation of its fields and
functions to global variables and LLVM functions.

Signatures were shown to have no translation to a single LLVM concept, instead
having an influence on the translation of the modules that it seals in linkage types
and more subtle ways.

The chapter concluded with a discussion about preventing side channel communi-
cation, which makes it necessary to clear registers and flags when calling or returning
to any external code.

The existence of opaque types in MiniML means that objects of these opaque types
can only be created by methods inside the module that declares the type synonym. To
ensure this, the use of masking and the tracking of type information proved necessary.

22



Chapter

3
Formal Specification

First, this chapter formally specifies the MiniML source language (Section 3.1). This
formal specification is broken down in three parts: a description of the MiniML
syntax (Section 3.1.1), the typing rules to which a correct program must conform
(Section 3.1.2), and the operational semantics that specify how a program executes
(Section 3.1.3).

In the same way, Section 3.2 formalizes the syntax of the LLVM Intermediate
Representation. This chapter then concludes by formalizing a secure compilation
scheme for the MiniML source language (Section 3.3).

3.1 MiniML

3.1.1 Syntax
First this section introduce the syntax of the MiniML language, as seen in Fig. 3.1,
Fig. 3.2 and Fig. 3.3. Like ML, the MiniML syntax is composed of three parts [MTM97]:
the Core language, a Module language, and the concept of a Program. The three
languages, Core, Module and Program each have their corresponding valid expressions.
The division between Core and Module mostly correlates to the concepts of ‘program-
ming in the small’ and ‘programming in the large’ [MTM97, DK75] respectively. This
separation of programming in the large and programming in the small aims to help
programmers to introduce the right degree of modularity in their software.

Core language
The Core mainly consists of value expressions e. These express the manipulation of
values and execution of functions to implement small algorithms or control logic. Every
value expression e needs to have a corresponding type τ , otherwise the expression is
not sound. The Core language syntax is shown in Fig. 3.1.

Module language
The Module language uses module expressions me to specify how the small parts of
Core expressions can be ‘glued together’ or composed into larger, working programs.
Its syntax is shown in Fig. 3.2.
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3. Formal Specification

Val Exp
e ::= num n (natural number)

| id (value identifier)

| StrId.id (struct value)

| (e1e2) (function application)

| let x : τ = e1 in e2 (let binding)

| (e1, e2) (pair)

| e.#1 | e.#2 (pair projection)

| [] (empty list)

| e :: e (list concatenation)

Identifiers
x ::= id (value identifier)

| StrId (structure identifier)

Types
τ ::= int (int type)

| StrId.t τ (struct type)

| τ1 → τ2 (function type)

| α (type variable)

| τ1 × τ2 (pair type)

| [τ ] (array type)

Figure 3.1: Core language syntax.

The Module language brings encapsulation and namespaces to MiniML. The
Module language does this by introducing the concept of a structure, as was informally
explained in Section 2.1. A structure is defined using a struct expression, and
bound to an identifier StrId using the structure expression. It consists of a body of
definitions which is denoted in the syntax as δ, using the bar notation for lists1. In
its body, a structure StrId can bind values id to a value expression e, or can define a
new type t.

Just as types in the Core language limit the number of valid or sound value ex-
pressions, signatures restrict the number of well-typed module expressions. Signatures
are named and bound to their identifier using the signature expression. They are

1 The bar notation uses ∅ as the empty set and the comma (,) as the prepend operator. For
example:

δ ::= ∅

| e : τ, δ
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defined using the sig expression, and their body consists of abstract type definitions,
type synonyms and value declarations.

A structure can be ascribed a signature using transparant (:) or opaque (:>)
ascription.

Transparant ascription Transparant ascription StrId : SigId lets the implementa-
tion of type definitions in the underlying structure StrId propagate through,
while hiding from external view any values that were not declared in the signature
SigId.

Opaque ascription Opaque ascription StrId :> SigId restricts the external view of
the structure to the values and types declared inside the signature SigId. If a
type t is declared abstract in SigId, its implementation is not known to any code
not local to the structure.

In order to obtain a more simple language to study, MiniML signatures restrict
their declarations to a subset T of the Core types τ . The subset T contains only
opaque types defined by structures, the int and function types. As a result, any value
that is accessible from outside the structure itself can only get parameters and return
values of type int, of an opaque type or of a function combination of those types.

This results in arrays [τ ] and pairs τ1 × τ2 not being primitive types for module
expressions. Only within a structure can a value be treated as an array or pair, if the
value is of an opaque type that is defined:

1. Within the same structure.

2. With an implementation containing the array or pair type.

Program
A MiniML program consists of a set of Module expressions. It is then concluded
by a single naked value expression e, functioning as the main of the program. This
description of a program allows us to first specify a set of signatures as well as a set
of structures conforming to those signatures. The syntax of a Program is shown in
Fig. 3.3

3.1.2 Type system
Having defined the syntax for MiniML and its parts, this section formalizes the static
semantics, also called its type system. As stated in Section 3.1.1, types and signatures
restrict the world of possible programs to those that consist of sound or well-typed
module and value expressions. It is the type system that formalizes when exactly a
module expression me is of the correct signature SigId, or a value expression e of the
correct type τ .

The MiniML language type system is based on the Hindley-Milner type sys-
tem [Hin69, Mil78]. While the Standard ML implementation provides type inference
using the Damas-Milner type inference algorithm [DM82], the MiniML language as-
sumes type annotations are available, written by the programmer. This is by no means
a fundamental restriction, the MiniML language does not deviate from ML enough to
prohibit the use of type inference.
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Mod Exp
me ::= structure StrId : SigId = struct d end (trans. struct. binding)

| structure StrId :> SigId = struct d end (opaque struct. binding)

| signature SigId = sig Σ end (sig. binding)

Definition
d ::= val id = e : τ (value def.)

| fun id x = e : τ (value def.)

| type α t = τ (type def.)

Signature body
Σ ::= δ (signature body)

Declaration
δ ::= type α t (abstract type declaration.)

| type α t = T (type synonym)

| val id : T (value declaration)

Shared type
T ::= int (type int)

| StrId.t τ (struct type)

| T1 → T2 (function type)

| α (type variable)

Figure 3.2: Module language syntax.

Program
P ::= me, P (module expression prefix)

| e (program entry point)

Figure 3.3: Program language syntax.

Type judgements and Contexts
The type system validates programs by checking that a program P consists solely of
sound or well-typed module expressions me and value expressions e. This checking
is done using typing judgements that state whether a single expression e or me is
well-typed. The typing judgement of an expression e is symbolized by:

` e : τ

The well-typedness of an expression e however does not depend on the expression
e in isolation. Instead, parts of the program processed earlier by the type checker can
have an influence on the well-typedness of the single expression e. This dependence
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of an expression e on earlier expressions is formalized using the idea of a context
Γ [Pie02].

This context keeps track of the type assumptions and type definitions as well as
structure and signature definitions made earlier. The structure of a context Γ is shown
in Fig. 3.4.

To access the mappings from StrId or SigId to its signature, its definitions or its
declarations, the context allows for projections. For example Γ[StrId].d will look up
the mapping (StrId 7→ {Σ, d}) in Γ and project this to the d specified in the mapping.
A lookup will fail if the identifier has no mapping in the context.

Context
Γ ::= ∅ (empty context)

| (id : σ),Γ (identifier type assumption)

| (t = τ),Γ (type definition)

| (StrId 7→ {Σ, d}),Γ (structure definition)

| (SigId 7→ Σ),Γ (signature definition)

Figure 3.4: Contexts in the MiniML type system.

With the addition of contexts, type judgements become relations between a context
Γ and expressions me or e, formalized as Γ ` e : τ . This states that an expression or
other part of the syntax is well-typed within the specified context Γ.

When typing judgement of a structure and its definitions occurs, the type system
returns a new typing context Γ′ to perform subsequent typing judgements. In this
resulting context, all subsequent expressions must be well-typed.

The Γ ` ♦ judgement is a statement of well-formedness of a context Γ. A context
is well-formed if the keyset of the lookup table it represents conforms to the standard
notion of a set, meaning every key is used only once. This makes it invalid to rebind
structures or signatures.

The possible typing judgements can be seen in Fig. 3.5.

ExpressionTyping ::= Γ ` e : σ
ModuleTyping ::= Γ ` me → Γ′

Well-formedness ::= Γ ` ♦

Figure 3.5: Typing judgements in the MiniML type system.

Type-schemes
The typing judgements, in their contexts, do not type an expression using a type τ .
Instead they use an extension on the regular type τ called a type-scheme σ. The
concept of a type-scheme is shown in Fig. 3.6.
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Type-Scheme σ ::= τ

| ∀α.σ

Figure 3.6: Type-schemes in the MiniML type system.

A type-scheme, sometimes called polytype, introduces a type of polymorphism
called let-polymorphism [Pie02] by taking a type variable α in the definition of τ ,
and quantifying it with the universal quantifier ∀. This allows any concrete types τ
to ‘match’ to the type variable, whereas an unquantified type variable a is unique
and only matches itself. Note that the definition of a type-scheme assures that the
resulting type-scheme is in prenex normal form, i.e. a string of quantifiers concluded
by a quantifier-free ending.

Free variables Looking at a type-scheme σ in Fig. 3.6, it is clear that some of the
type variables α are quantified, and others are not. Those type variables that
are not quantified are called ‘free’ variables. The set of free variables within a
type-scheme σ is denoted by the predicate free(σ), and the value of this predicate
is computed as follows:

free(int) = ∅
free(StrId.t τ) =

⋃
τ∈τ

free(τ)

free(α) = {α}
free([τ ]) = free(τ)

free(τ1 × τ2 ) = free(τ1 ) ∪ free(τ2 )

free(τ1 → τ2 ) = free(τ2 ) ∪
⋃
τ∈τ1

free(τ)

The type-scheme introduces polymorphism because it possible for two type-schemes
to match, even if they are not exactly the same. For example, the identity function
id is typed id : ∀α.α→ α. Because any type can be accepted as being of type α one
can use the same id function everywhere regardless of the arguments type.

The way that two type-schemes match, even if they are not the same, is given
by the two relations called specialization/generalization. Instinctively, the relations
corresponds to the idea that a type variable α can be exchanged for any type τ , but
that this must happen in a consistent way.

Type-scheme specialization: The specialization relation σ1 ≥ σ2 expresses that
σ2 is more specialized than σ1. This means that the following rule2 determines
the specialization relation.

2A rule uses the notation premise
conclusion where premise is the set of conditions for that must hold for

the conclusion to hold.
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τ2 = [αi 7→ τi]τ1 βi 6∈ free(∀α1 ...∀αn.τ1 )
∀α1...∀αn.τ1 ≥ ∀βi...∀βmτ ′2

(specialization)

In other words, a more specialized type-scheme can be obtained by consistently
replacing quantified type variables αi in the more general type-scheme by a type
τi. This type τi is allowed to contain type variables itself. However, no type
variable that was free in the more general type-scheme can become quantified in
the more specialized type-scheme.
The first condition gives one the possibility to specify the type of a type variable.
This second condition forbids one to rescope a type variable in the process.

Type-scheme generalization: Type-scheme generalization is the opposite process
of type-scheme specialization. However, whereas specialization can be expressed
independent of the context, whether or not one is allowed to generalize, is
dependent on the context. Generalization allows one to quantify an unquantified
variable, as long as it does not appear unquantified in any type assumption
already made in the current context.

Γ ` e : σ α 6∈ free(Γ)
Γ ` e : ∀α.σ (generalization)

Signature Matching
Just like set of valid value expressions e is restricted by the type system using types, the
set of valid structure expressions is restricted using signature ascription. As mentioned
earlier, these ascriptions can be either transparant or opaque. This subsection explains
how a structure expression is restricted by a signature using the signature matching
relation.

Every structure expression has a corresponding principal signature [Pie04], symbol-
ized by PS(d), where d is the body of the struct expression. The principal signature
of a structure expression consists of all type specifications and all values with their
corresponding types.

When a structure is ascribed with a signature, its principal signature must match
with the ascribed signature. In this matching, the principal signature is called the
candidate, while the ascribed signature is called the target. The signature matching
relation is formalized using Σtarget � Σcandidate.

For a candidate signature to match its target, any value or type specification in
the target signature must have an equivalent specification in the candidate signature.

1. For types, this means that for each type in the target, there is a type in the
candidate with the same name. If target carries a definition for the type, candidate
must provide an equivalent definition.

2. For values, this means that for each value in the target, there exists a value with
the same name in the candidate whose type is a subtype 3 of the corresponding
type in the target.

3Liskov substitution principle is used to determine subtypes i.e. arguments are allowed to
generalize, return types can be specialized.
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With these signature matching constraints, a structure can have a principal
signature that is broader than its ascribed signature. The structure can define more
types or values, and provide existing values with subtypes. These types and values
can be used locally within the structure, but not in non-local code.

The effective signature of a structure StrId with body d is denoted with ES(d),
which corresponds to

• all type definitions present in d, and the value declarations present in SigId ⇔
StrId was transparantly ascribed with signature SigId.

• The signature bound to SigId if and only if StrId was opaquely ascribed with
signature SigId.

Type definitions and value declarations in a signature can contain type variables.
However, all type variables are assumed be quantified universally. This means, for
example, that a type definition written as type α t = τ contained in d results in a
type definition t α = ∀α1...∀αn.τ as an element of ES(d).

Whether or not a structure’s principal signature matches with a signature Sig,
depends only on the structural characteristics Sig requires, and not on whether the
structure was explicitly ascribed with Sig. For this reason, signature matching is a
form of structural typing, as opposed to nominal typing [Pie04].

Note that signatures are in fact a set of type bindings and type definitions. Since a
context can contain type bindings and type definitions as well, it is possible to take
the union of a signature and a context Γ.

Type Rules
Using the type judgements specified earlier, it is possible to create a set of rules
that specify when an expression e or me is valid. Some expressions are well-typed
unconditionally and in any context, for example rule T-Num in the typing rules in
Fig. 3.8. Others are only typed correctly if for example a certain subexpression is
correctly typed. In this case, the typing rule becomes of the form shown in rule T-App.

The typing rules are divided in rules concerning the core language in Fig. 3.8, rules
concerning the Module language in Fig. 3.9 and rules for the Program language in
Fig. 3.7.

Γ ` me→ Γ′ Γ′ ` ♦ Γ′ ` P
Γ ` me,P (T-Program)

Figure 3.7: Typing rules for the Program language.
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Γ ` num n : nat (T-Num)

σ2 ≥ σ1 id : σ2 ∈ Γ
Γ ` id : σ1

(T-Mono)

Γ ` e1 : τ2 → τ1 Γ ` e2 : τ2 τ1 6= τ3 → τ4 ∀τ ∈ τ2 : τ 6= τ3 → τ4
Γ ` e1e2 : τ1

(T-App)

Γ ` e2 : σ Γ, x : σ ` e1 : τ
Γ ` let p = e2 in e1 : τ (T-Let)

Γ ` e : σ α 6∈ free(Γ)
Γ ` e : ∀α.σ (T-Gen)

Γ ` e1 : τ1 Γ ` e2 : τ2)
Γ ` (e1, e2) : τ1 × τ2

(T-Pair)

Γ ` e1 : τ Γ ` e2 : [τ ]
Γ ` e1 :: e2 : [τ ] (T-List)

Γ[] : ∀α.[α] (T-EmptyList)

Γ ` e : ∀α.τ × α
Γ ` e.#1 : τ (T-PairLeft)

Γ ` e : ∀α.α× τ
Γ ` e.#2 : τ (T-PairLeft)

Figure 3.8: Typing rules for the Core language.
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Γ ` SigId = Σ→ (SigId 7→ Σ),Γ (T-Signature)

Γ[SigId].Σ � PS(d) ∀d1 ∈ d : PS(d \ {d1}) ∪ Γ ` d1

Γ ` StrId : SigId = d→ (StrId 7→ {ES(d), d}),Γ
(T-Structure)

Γ ` e : τ
Γ ` val id = e : τ (T-ValDef)

(x = τ2) ∪ Γ ` e : τ1
Γ ` fun id x = e : τ2 → τ1

(T-FunDef)

α = free(τ)
Γ ` type α t = τ

(T-TypeDef)

StrId.id : σ ∈ Γ[StrId].Σ
Γ ` StrId.id : τ (T-ModVar)

Γ ` e : σ1 t α = σ2 ∈ Γ[StrId].Σ σ2 ≥ σ1
Γ ` e : StrId.t τ (T-ModTransType)

Γ ` e : StrId.t τ t α = σ2 ∈ Γ[StrId].Σ [
⋃
τi∈τ αi 7→ τi]σ2 = σ

Γ ` e : σ
(T-ModTransType2)

Figure 3.9: Typing rules for the Module language.
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3.1.3 Operational semantics

Value v ::= num n
| (v, v)
| [v]

Module Table T ::= ∅
| (StrId 7→ d), T

Evaluation ::= T ` P → T ` P ′

Figure 3.10: Relations and entities of the operational semantics.

The operational semantics defines a module table T, and the evaluation relation,
shown in Fig. 3.10. This module table contains mappings from the module identifiers
to their definition.

The module table T allows looking up the definition behind a certain identifier
and accessing a certain part of it using projection. T [StrId].SigId will give access to
the SigId in the definition of StrId.

The evaluation relation allows the evaluation of a program P , which consists of
expressions e and module expressions me, to a (simpler) Program P ′, while potentially
making a lookup in T.

Rules
In Fig. 3.11, the evaluation rules of a MiniML program are shown. It first collects
evaluates module expressions, skipping signature-bindings and adding structure-
bindings to the table T. When a field inside a structure is referenced, the reference
can be evaluated to its definition, with the exception that all references to fields y
defined within the module are correctly substituted with StrId.y.
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T ` e1 → T ` e′1
T ` (e1, e2)→ T ` (e′1, e2) (E-PairLeft)

T ` e2 → T ` e′2
T ` (e1, e2)→ T ` (e1, e′2) (E-PairRight)

T ` e1 → T ` e′1
T ` let p = e1 in e2 → T ` let p = e′1 in e2

(E-Let)

T ` let id = v in e→ T ` [id 7→ v]e (E-LetV)

T ` e1 → T ` e′1
T ` e1v → T ` [x 7→ v]e′1

(E-App1)

T ` e2 → T ` v
T ` e1 e2 → T ` e1; v (E-App2)

(x = e′ : τ) ∈ T [StrId].d e = [this.y 7→ StrId.y]e′ ∀(this.y ∈ e′)
T ` StrId.x→ T ` e

(E-ModField)

T ` StrId : SigId = d,P → (StrId 7→ d), T ` P (E-StructDef)

T ` SigId = Σ ,P → T ` P (E-SigExp)

Figure 3.11: MiniML evaluation rules.
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3.2 LLVM Intermediate Representation

The LLVM Intermediate Representation is a language very reminiscent of assembly.
In contrast to assembly, it is strongly typed, and operates with a slightly higher level
of abstraction.

This section largely builds on the work of Jianzhou Zhao et al. in formalizing the
LLVM IR [ZNMZ12]. Their paper formalizes a reduced part of the LLVM IR in order
to create mathematically verified program transformations. It provides a language
syntax as well as static and dynamic semantics.

3.2.1 Syntax
In Fig. 3.12, the reduced syntax of LLVM IR is given, with some small changes from
the work of Jianzhou Zhao et al. [ZNMZ12].

The syntax shows the idea of a module, which corresponds to a unit that can be
compiled separately from other modules. Later, all modules are put together in a
stage called linking.

A module consists, among others, of definitions and declarations:

Definitions are named values, whose name is unique within a module, defined within
the module itself. They can be defined with linkage type private, which means
that the linkage phase will not allow other modules to address these values.

Declarations represent dependencies on values defined externally. They can then
be used within the module. Later, the linking phase will couple this declaration
to an implementation provided by a different module.
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Modules mod ::= prod
Products prod ::= id = link global typ const align | link define typ id(arg){b}

| declare typ id(arg) | link constant typ const align
Linkage link ::= private | external

Types typ ::= isz | void | typ ∗ | [sz × typ] | { typj
j } | typ typj

j } |id
Values val ::= id | cnst

Binops bop ::= add | sub | mul | udiv | sdiv | urem | srem | shl | lshr | and
| or | xor

Extension eop ::= zext | sext | fpext
Cast op cop ::= ptrtoint | inttoptr | bitcast

Trunc op trop ::= truncint | truncfp
Constants cnst ::= isz Int | typ ∗ id | (typ∗) null | typ zeroinitializer

| typ[cnstj ]
j | {cnstj}

j | typ undef | bop cnst1 cnst2
| fbop cnst1 cnst2 | trop cnst to typ | eop cnst to typ

| cop cnst to typ | getelementptr cnst cstj
j

| select cnst0 cnst1 cnst2 | icmp cond cnst1 cnst2
| fcmp fcond cnst1 cnst2

Blocks b ::= l φ c tmn

φ nodes φ ::= id = phi typ[valj , lj ]
j

Label l ::= id:
Tmns tmn ::= br val l1 l2 | br l | ret typ val | ret void | unreachable

Commands c ::= id = bop(int sz) val1 val2 | | id = load(typ∗) val1 align
| store typ val1 val2 align | id = malloc typ val align
| free(typ∗) val | id = alloca typ val align
| id = trop typ1 val to typ2 | id = eop typ1 val to typ2

| id = cop typ1 val to typ2 | id = icmp cond typ val1 val2
| id = select val0 typ val1 val2 | 〈id〉 = call typ0 val0 param

| id = getelementptr(typ∗) val valj
j

Figure 3.12: The reduced LLVM Syntax, largely built upon Jianzhou Zhao et
al. [ZNMZ12]
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3.3 Formalized Compiler

This section formalizes the secure compilation process. The compilation process is a
translation of a program P expressed in MiniML to a program written in the LLVM IR.
It is symbolized as the translation function J•K.

The compiler formalized here aims to be a secure compiler, it takes a set of
module expressions and translates them to LLVM IR to allow for fully abstract [Aba99,
ASJP12] binary protected modules or SPM s. As explained in Section 1.1, fully abstract
compilation uses the notion of contextual equivalence (') [ASJP12] to describe the
requirements of a secure compiler.

These requirements of the compiler are interpreted as follows: The program P
given to the compiler is a set of module expressions me that represent the secure code.
This set of module expressions me is compiled separately from any other, insecure code
to an LLVM IR program P↓ which can be processed to a fully abstract SPM. This
means that if this P↓ is later compiled further to an object file and linked together with
a context C , there exists no context C that can tell from P↓ from the compilation P ′↓,
where P ′↓ is the compilation result of a source-level contextually equivalent MiniML
program P ′.

The result of the translation is expected to run as an SPM on a low-level machine
model as used in [ASJP12, PCP13]. This model is a Protected Module Architecture
or PMA, with access control semantics as explained in Section 1.2.

The result of the translation will be loaded within the protected code, and its data
section will correspond to the protected data section of the PMA. The formalization
of the translation function J•K will provide clear annotations for additional actions
that can not be specified within the LLVM IR language. These are actions such as the
specification of entry points in the SPM layout or the clearing of low-level registers
and flags.

3.3.1 Formalization
First, before translating the program, 4 LLVM IR types are defined:
%int = type i64 ; 1
%tyvar = type {%int, %int} ; 2
%pair = type {%tyvar*, %tyvar*} ; 3
%array = type {%int, [0 x %tyvar*]} ;4

These will be used to represent the MiniML int, α, (τ, τ) and [τ ] types.
Type variables are represented by a tuple of integers. The first integer is a pointer

to the value, cast to an int. The second integer is an integer that identifies the effective
type of the value stored inside the type variable.

To do this, every MiniML type τ must correspond to an integer τint. The int, α,
(τ, τ) and [τ ] types are defined to correspond with integers 0 to 4.
Next, the real translation of the program, which corresponds to a set of module
expressions me, starts.

All module expressions are sorted based on the name used in the binding. Two
programs with differently ordered module expressions me are contextually equivalent
as long as long as no module expression me has unresolved dependencies on other
module expressions when it is bound. Sorting module expressions based on the name
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used in the binding makes sure that all MiniML programs that provide the same set of
bindings result in an LLVM IR program with the corresponding bindings happening
in the same order.

JmeK = Jme1 ,me2 , . . . ,menK → sort(Jme1 K, Jme2 K, . . . , JmenK)

Then, all module expressions can be translated individually. The signature SigId
used in the ascription of StrId is saved:

JmeK → JStrId : SigId = dK
JStrId : SigId = dK → JdKSigId

All fields in a module are sorted alphabetically as well. This is done for the same
reason as the sorting of module expressions: two MiniML programs P differing only
in the order of their fields are contextually equivalent. To prevent leakage of this
ordering in the target-level, outputting the fields in the target language happens in a
fixed ordering.

JdKSigId = Jd1 , . . . , dnKSigId → sort(Jd1 KSigId , . . . , JdnKSigId)

Now, every definition is translated separately. The translation of a definition depends
on a number of things:

• Whether the definition is that of a type or that of a field.

• Whether or not the value is local to the structure StrId. This depends on the
value being declared in the signature SigId.

Jtype α t = τK → %t = type {τ}
[The type and its definition are tracked. The type
is assigned a unique integer τint to identify it.
This way, when a masked pointer is received in
an entry stub, its type can be checked.]

Jval id = e : τKSigId → define private τ* @id_internal(){ JeKSigId

}
[The next part is only included if the value is
declared in the signature]
define private %int @id_stub() noinline{

[ Switch stack, move parameters.]
%0 = call τ* @id_internal()
%1 = ptrtoint τ* %0 to %int
%2 = call %int @mask(%int %1,%int

τint)
[Switch stack, clear registers.]
ret %int %2

}
define %int @id(){
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[Add entry point in SPM metadata for @id, point-
ing to this location.]

%ret = tail call %int @id()
ret %int %ret

}

Jfun id x = e : τKSigId → define private τ* @id_internal(τx∗ x){
JeKSigId

}
[The next part is only included if the value is
declared in the signature]
define private %int @id_stub(%int y)
noinline{

[ Switch stack, move parameters.]
%z = call %int @unmask(%int %y)
%t = call %int @unmasktype(%int %y)
%c = icmp eq %int %t %τx,int
br i1 %c, label %Continue, label %

Error

Continue:
%x = inttoptr %int %z to τx∗
%0 = call τ* @id_internal(τx∗ %x)
%1 = ptrtoint τ* %0 to %int
%2 = call %int @mask(%int %1, %int

τint)
[Switch stack, clear registers and flags.]
ret %int %2

Error:
call void @exit(i32 -1)
unreachable

}
define %int @id(%int y){
[Add entry point in SPM metadata for @id, point-
ing to this location.]

%ret = tail call %int @id(%int y)
ret %int %ret

}

The code of the @mask, @unmask and @unmasktype functions is given in Listing A.1
in App. A. It provides a naive implementation of @mask, @unmask and @unmasktype
functions using linked lists.
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If a function receives polymorphic arguments, for example createPair :: a -> a
-> Pair a, the internal functions arguments are of type %tyvar*. When the function
is called from insecure code, the stub loads the parameters from the masking list and
wraps them in a %tyvar.
Before passing these arguments to the internal function, the compiler inserts code
to check the consistency of the underlying type equation, using the @tyvarcheck
function. The code implementing @tyvarcheck is given in Listing A.2 in App. A.
As an example, Section A.3 in App. A provides an example of the compilation of a
polymorphic function.

The translation of an expression poses no additional security concerns and is
compiled to the function or value body. Since Section 2.2.1 states the module
expressions making up the SPM are compiled in a separate file, before the context,
nothing in these expressions can depend on things defined in insecure code. This
is not a fundamental restriction, it is possible to have these expressions depend on
outside code by either:

• Allowing dependencies on the context to be hardcoded, which would correspond
to the high-level MiniML interpretation that the context is split up in two
parts. The first part is compiled before the file containing the secure module
expressions, the second part after the secure module expressions.
The resulting security issues could by resolved by introducing a returnback entry
point into the SPM, as described by Agten et al. [ASJP12].

• Adding the functionality of callbacks to the language, using closures.

3.3.2 Implementation
An implementation of this formal compiler was written in Scala. This secure compiler
takes an abstract syntax tree (AST) representing a MiniML program as its input.
The nodes of this AST correspond to MiniML’s syntactical constructs, as specified
in Section 3.1.1. It assumes that the program represented by this AST is correctly
typed, i.e. it has passed a type check as specified by the type system in Section 3.1.2.

As a result of the compilation, it outputs a file with extension .ll, containing the
LLVM IR translation of the MiniML program. An example output of this compiler
was shown in Section 2.4.2.

3.4 Conclusion

This chapter formally specified a simple version of the MiniML source language and
the LLVM IR target language. It then gave a formal representation of the secure
compiler from MiniML to LLVM IR.

The MiniML language as sketched here does not yet contain the more advanced
concepts found in ML’s well-known module language. The next chapter aims to rectify
this by introducing both higher-order functions and functors to the MiniML language.
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Chapter

4
Advanced ML Concepts

This chapter extends the capabilities of the subset of the ML language. Section 4.1
introduces higher-order functions and discusses how they can be compiled securely.
Afterwards, Section 4.2 explains functors and their addition to MiniML.

4.1 Higher-Order Functions

A higher-order function is a function that allows other functions to be given as input
or returns a function as output. MiniML by treats functions as first-class values,
meaning that functions represent an entity that can be passed around as a parameter
or return value and can be assigned to a variable.

An example of a higher-order function is shown in Listing 4.1. The function
addCurried takes an argument x and as a result returns another function. Therefore,
addCurried is a higher-order function.

Since MiniML uses what in literature is known as lexical scoping, the function that
addCurried returns is allowed access to the non-local or free variable x, even though it
is not defined within the local scope of the function, because its defined scope lexically
surrounds the definition of the function.

Listing 4.1: The use of lexical scoping calls for closures.
1 fun addCurried x =
2 let innerFunction y = x + y in innerFunction

When a function is created using a call to addCurried (and possibly saved in a
variable to call it later on) this function must be able to access the variable x that was
given as a parameter to addCurried. The function entity created and possibly saved
in a variable in other words must keep track of the non-local variables it has access
to. This is implemented in MiniML using the concept of closures [AP03]. A closure
consists of a simple function reference together with a list of all the free variables and
their values.This list of non-local variables and their values is called the referencing
environment.

It is possible for these free variables to be complex data such as arrays or abstract
data types, for example the Dictionary from Listing 2.1.

Security concerns regarding higher-order functions present themselves in several
different ways:
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• The code of the function can be defined within trusted code or untrusted code.

• When is a closure saved within trusted memory or within untrusted memory?

• Every free variable of a higher order function can originate from trusted or
untrusted code alike. How do the origin of the free variable and the location of
the closure interact?

• Closures can be passed around as a value, enabling them to cross the security
boundary.

The compilation scheme presented here requires that the referencing environment
are saved in the trusted memory when the closure is created in secure code, and in
untrusted memory when it is created in untrusted code. The creation of a closure
happens when a function is used as a value. For example, Listing 4.1 returns the
innerFunction that it defines as a value. If Listing 4.1 is located in secure code, its
referencing environment and pointer is saved in trusted memory. If it were located
in insecure code, the closure would be located in untrusted code. The location of a
closure in memory defines the security status of a closure: A secure closure is one that
is saved in trusted memory.

For named functions, whose name can be used to pass them as a value, the code
where their name is used defines the security status. For example in Listing 4.2, the
closure that represents the add function is considered to be created by the code of
Listing 4.2, even if this is the insecure context.

This is explained by looking at the unsugared version of this code, as shown in
Listing 4.3. In this desugared form, it is clear that the code presented in Listing 4.3
creates the closure. The desugared form finds its justification in examples where the
function is already passed one or more of its parameters while leaving the remaining
parameters unspecified, a technique called currying. This technique allows for the
function insert, defined by the dictionary code of Listing 2.1, to be passed as a value
with the dictionary into which the key-value pair must be inserted already defined
using this code: let closureValue = insert emptyDictionary.

Listing 4.2: Passing a predefined function.
1 foldl (add) emptyList values

Listing 4.3: Passing a predefined function, unsugared.
1 foldl (\x y -> add x y) emptyList values

Now that the security status of closures had properly been defined and the closure
value itself is assigned to trusted or untrusted memory, it is possible to look at the
other problems of higher-order function handling, such as the origin of free variables,
or the passing of closures across the security boundary.

4.1.1 Secure Free Variables For A Secure Closure
In this case, the code that is executed when the closure is called is located in the
secure code section. The function pointer and the referencing environment are both
in secure memory and are protected from any tampering by the target-level access
control model and the checking performed upon compilation.
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4.1.2 Insecure Free Variables For A Secure Closure

If a closure is created by trusted code with free variables stemming from untrusted
code, the values of these free variables should be copied to the referencing environment
inside the closure. This is in contrast to the more straightforward low-level solution
of having a pointer in the referencing environment to the original value in insecure
memory. This need for copying arises because the low-level code could otherwise
change the value of the free variable at any time, as it would be located inside untrusted
memory, even mid-execution of the higher-order function. Listing 4.4 gives an example
of two functions that are vulnerable to this kind of attack.

Listing 4.4: Changing free variables inside untrusted memory mid-execution can break
contextual equivalence.

1 fun generateClosure1 freevar =
2 let innerFunction x =
3 (let b = freevar
4 in x + callback 2 + b)
5 in innerFunction
6
7 fun generateClosure2 freevar =
8 let innerFunction x = x + callback 2 + freevar
9 in innerFunction

The two functions shown in Listing 4.4 are contextually equivalent in MiniML.
Their compiled versions however are not contextually equivalent unless the free
variables from untrusted code are copied to the trusted memory. If no copying of free
variables occurs, an attacker could set distinguish a module using generateClosure1
from one using generateClosure2 using the following attack:

Call-by-value Attack

1. After calling the closure, the attacker forces execution to temporarily be passed
back to the unsafe code. This is achieved in Listing 4.4 by means of the callback
function. Even when no callbacks are available this type of attack remains
possible. For example, in a more powerful language providing a multithreaded
environment, this can be forced using a context switch.

2. The context uses the fact that freevar is saved in unprotected memory to
change the value of freevar. This not possible in the source language, but the
target language provides no guarantees against modification of the unprotected
memory.

3. If the implementation of generateClosure1 was used, then the result of the
closure application depends on when exactly execution was temporarily switched
to the attacker’s context. If this happened after copying the value of freevar
to b, which is saved in protected memory, then the result of the closure will not
reflect the change of value of freevar by the attacker’s context. If the execution
switch happens before this copying of freevar into protected memory, then the
result will be computed using the changed value of freevar.

43



4. Advanced ML Concepts

In contrast, a version using generateClosure2 never copies the value of freevar
into protected memory. Therefore the result of the closure will always be

computed using the changed value of freevar.

The attack described above shows that it is possible to manipulate the low-level
versions of the code of Listing 4.4 in such a way that the two different functions do
not give the same result. Consequently, this means that the contextual equivalence
of the compiled code is broken, whereas the source code is unaffected by the attack.
After all, the source language does not allow the memory location of the parameter
that was passed to be changed. As a result, step 2 is only possible in the low-level
language.

This problem is effectively mitigated by ensuring that upon application of the
closure every value is copied to the secure environment, conforming to a value-passing
call semantic.

However, the MiniML language as described in this work restricts the values that
can pass the border between secure code and insecure context to values of either type
int or an opaque type. Int types are always passed using their effective value. Opaque
types are not susceptible to the attack described above because they can only be
manipulated using functions from the structure that declared the opaque type.

4.1.3 Insecure Free Variables For An Insecure Closure
This combination entails no interaction between the attacker’s context and the SPM
beyond the regular means of function calling. This means that it is not necessary to
introduce security measures beyond those discussed in the previous chapters. How
closures and their values are represented is only important to the extent to which
implementation for this case and the other cases might be shared by tackling the
problem in a generic way.

4.1.4 Secure Free Variables For An Insecure Closure
As stated in Chapter 2, values originating from secure code should not leave the safety
of secure memory provided by the low-level acces control model. Instead, these values
passed must be masked and represented in the insecure code by their masking index.
These same measures are necessary when working with closures. As long as we obey
these measures, and represent secure free variables in the referencing environment by
their masking index, they are not susceptible to tampering, illegal disclosure or any
other manipulation attacks. The only way to interact with these secure free variables
is by passing them as parameters to functions within the SPM. This shows that the
added power of closures does not require any new security measures for this interaction
between SPM and the attacker’s context.

4.1.5 Cross-boundary Passing Of A Secure Closure
Now that it is possible to have a secure closure as a first class value, it can be passed as
an object across the boundary between SPM and the attacker’s context. This section
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explores the security measures that must be taken when this occurs. If an SPM would
pass a closure generated inside its body to the untrusted code, the untrusted code
could change the value of the function pointer and inspect or change the values saved
in the referencing environment.

Each of these actions break contextual equivalence:

Change pointer value. The pointer to the code might be changed to code that
makes certain assumptions about the structure used to implement abstract data
types. This way, the context could discern between contextually equivalent
SPM s in which the assumptions may or may not hold.

Inspect environment values. Assumptions about the way abstract data types are
structured can be checked by inspecting the environment values.

Change environment values. Changing values in the reference environment allows
an attacker to discern between a higher order function that first copies its free
variables and an equivalent higher order functions that does not, as shown in
Listing 4.4.

As a result, the closure entity itself should not be passed across the boundary
between the SPM and the trusted code. Instead, the closure should be masked, just
like any value, as explained in Section 2.4.1. When a closure should be passed to the
untrusted code, its corresponding index in the masking map of the SPM is passed
instead. In order to later execute the closure, the SPM should offer a closure-evaluation
entry point. This entry point first takes a pointer to a closure in the masking map.
Then, because it is located within the SPM, the entry point is able to jump to the
function pointer specified by the closure and run the function code.

4.1.6 The Closure-Evaluation Entry Point
Because closures can be passed freely, it is possible for insecure code to obtain a
closure value. Of course this insecure code is allowed to make use of the closure, and
execute the underlying function. Execution of a closure is also called the evaluation of
the closure. Application of a secure closure by the code in this context is not possible
in a direct and straightforward way: the context is not capable of jumping to the code
representing the closure because the code that corresponds to the closure might not
be located at an entry point of the SPM and because it has only knowledge of the
masking index of the closure.

To allow insecure code to execute a closure, the SPM offers one generic closure-
evaluation entry point. This entry point should:

1. Take a masked index as a parameter

2. Allow for an unspecified amount of other parameters to be passed as well, which
will be relayed as parameters to the function represented by the closure.

3. Copy the parameters provided by the attacker’s context in order to prevent
call-by-value attacks as shown in Listing 4.4.

4. Look up the masked index and retrieve the closure being referenced, i.e. the
function pointer and the referencing environment containing the free variables.

45



4. Advanced ML Concepts

5. Jump to the function pointer providing copies of any parameters it might require,
as well as the referencing environment.

6. When execution of the closure is finished, the closure-evaluation entry point
provides cleanup of the copied values and performs the tasks necessary for all
entry points to the SPM code such as register and flag emptying.

4.2 Functors

This section introduces the MiniML concept of functors. Functors can be seen as
functions from structures to structures. They accept a structure that conforms to a
given signature and create a different structure as a result.

Functors are a way of parametrizing structures. They can be used to implement
a structure that depends on behavior provided by another structure, making only
limited assumptions regarding the way this behavior is implemented. This method of
abstraction can be used to create generic data structures.

For example, using functors the dictionary example from Chapter 2 can be made
into a more generic data structure. The dictionary structure as given in Listing 2.1 is
not type independent since only values of type string are allowed to be used as keys.

Ideally however, how a dictionary works would be described in a generic way that
does not care whether the key is of type string, int or any other type. Instead, it needs
only the assurance that some specific functionality is provided by the type. The generic
dictionary using functors is shown in Listing 4.5. Its alternative implementation is
shown as well in Listing 4.6.

Listing 4.5: A generic dictionary that can take any type of the EQUAL typeclass as
its key.

1 signature DICTIONARY = sig
2 type key
3 type ’a dictionary
4 val emptyDictionary : ’a dictionary
5 val insert : ’a dictionary -> key -> ’a -> ’a dictionary
6 val lookup : ’a dictionary -> key -> ’a
7 end
8 signature EQUAL = sig
9 type t

10 val equal : t -> t -> bool
11 end
12 structure StringEqual: EQUAL = struct
13 type t = string
14 fun equal t1 t2 = case String.compare(t1,t2)
15 of EQUAL => true
16 | _ => false
17 end
18 functor DictionaryFn (KeyStruct:EQUAL) :> DICTIONARY where type key =

KeyStruct.t = struct
19 type key = KeyStruct.t
20 type ’a dictionary = (key * ’a) list
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21 val emptyDictionary = []
22 fun insert d x y = (x,y)::d
23 fun lookup |[] x = error
24 |(key,value):ds x = if(KeyStruct.equal key x)
25 then value
26 else (lookup ds x)
27 end
28 structure StringDict = DictionaryFn(StringEqual);

Listing 4.6: The alternative implementations of the dictionary.
1 functor DictionaryFn(KeyStruct:EQUAL) :> DICTIONARY where type key =

KeyStruct.t = struct
2 type key = KeyStruct.t
3 type ’a dictionary = (key list * ’a list)
4 val emptyDictionary = ([],[])
5 fun insert (a,b) x y = (x::a,y::b)
6 fun lookup |[] x = error
7 |(key:ks, value:vs) x = if(KeyStruct.equal key x)
8 then val
9 else (lookup (ks,vs) x)

10 end

In order to parametrize over the type of key, the dictionary signature of Listing 2.2
was expanded with an extra type named key, as shown in line 3 of Listing 4.5. On
top of that, lines 10-14 specify a signature EQUAL that defines the interface to which a
type must comply in order to be a possible key for a dictionary. Lines 15-21 specify a
structure StringEqual that conforms to the signature needed to act as a key type for
a dictionary.

Finally, lines 24-34 show how to define a functor in MiniML. First the argument
structures and their corresponding signatures are specified, in this case KeyStruct,
whose signature must match signature EQUAL. Next, the structure resulting from
functor application is bound to the DICTIONARY signature using opaque ascription. The
choice for opaque ascription ensures that the specific implementation of dictionaries,
i.e. as a list of pairs (Listing 4.5) or a pair of lists (Listing 4.6), remains hidden. As a
consequence, the dictionary type is an abstract type whose values only can be created
by the dictionary structure that results from the functor application.

However, the signature DICTIONARY hides the implementation of the key type.
This is a problem, since a user must be able to create values of type key and pass
them to insert function. The type of values that is put inside the dictionary does not
suffer from the same problem as its type is specified parametrically as type variable
’a in the type definition type ’a dictionary.

This problem can not be solved by specifying the type inside the DICTIONARY
signature, since then it loses the flexibility of allowing multiple different types of
keys. Nor can it be made a type variable in the type definition type ’a dictionary
because type variables are universally quantified. This means any type can replace
them, whereas a dictionary only makes sense if an equality check is possible on the
type of its keys. In other words, specifying the key as a type variable (type (’key, ’

47



4. Advanced ML Concepts

a) dictionary) is unsatisfactory because then the ability to put constraints on the
chosen type is lost.

Instead, the problem is solved by modifying our opaque ascription when it is
applied to the structure resulting from the functor DictionaryFn, by specifying that
they key type is equal to the type t specified in the KeyStruct that was passed as
the functor’s argument (Line 24). This modification makes the type of key freely
available, yet still dependent on the specific key structure that was used when the
dictionary structure was created using the functor.

The last line of Listing 4.5 shows how the functor DictionaryFn is eventually
applied to the StringEqual structure, resulting in a dictionary structure saved as
StringDict that uses string as type for its keys, and compares them using the regular
String.compare function. This way of specifying a functor allows for very easy change
of the key type, as well as the way that they are compared. For example, it would
require only a minimal change to create a dictionary that disregards capitalization
when comparing its keys of type string, and it is even possible to cleanly use this
alternative implementation in conjunction with the case-sensitive implementation.
Note that in the example above, the structure StringEqual was a valid parameter to
functor DictionaryFn because StringEquals signature matched to the EQUAL signa-
ture that the functor expected. In the example of Listing 4.5 this is straightforward,
the transparent ascription of StringEqual with signature EQUAL already assures this.
However, the signature matching relation allows the candidate signature to be broader
than the target signature. For functor application this means that the argument
structure that is passed can define more types or members (values or functions) than
the functor expects. The existence of these types and members however is not assured
and the functor can not use them in its body.

As was shown in line 36 of Listing 4.5, where the DictionaryFn functor is applied,
the addition of functors requires that structures become values, so that they can
be passed to functors to create new structures. However, they are not first-class
values: they are bound to names using the special structure keyword, and can only
be returned by functors, not by any Core language expression. As all conditional
expressions are part of the Core language, structure bindings are always unconditional,
which means every structure binding is determined fully before compile time.

4.2.1 Security Status of the Resulting Structure
Now that functors are added to the MiniML language, it is necessary to determine the
security status of functors. When is the output structure of a functor considered to
be part of the SPM, and when is it part of the insecure context? This question has a
simple, yet perhaps surprising answer: The output structure resulting from a functor
has its security status determined by the location of the code defining the functor.

To see why this is the logical choice, consider the example definitions of a dictionary
functor in Listing 4.5 and Listing 4.6, and the two possible locations for the functor
source code:

In secure code: Suppose DictionaryFn is defined in secure code, for example when
it is part of a library that is offered as a protected module. This library could
choose to implement the DictionaryFn as in Listing 4.5 (line 24-34) or as in
Listing 4.6. Regardless of whether its argument, KeyStruct, was defined in
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secure code or in insecure code, the specific implementation of this dictionary
is supposed to be abstract. The resulting dictionary structure is secure. This
means that values of types that are defined by the functor can only be returned
to the context as masked values. In its implementation, the functor can freely
call functions of the (possibly insecure) structure, it must however take the same
precautions as any callback to insecure code.

In insecure code: Suppose DictionaryFn is defined in insecure code. Now the
choices made when implementing the dictionary are not expected to be abstract.
There is no implementation hiding in this case.
This is supported by the consideration that one could replace the functor code
with the non-parametrized structure that would result from functor application.
This structure would then be a part of insecure code, and of course one would
expect that the security status of structures does not change simply due to the
use of functors.

A possibly surprising conclusion is that this argument holds, regardless of whether
the functor application was done within the secure code or within the insecure code.
As a consequence, application of a functor inside the attacker’s context can result in
the creation of an additional secure structure.

4.2.2 Compilation of Functors
With the security status of functors determined in Section 4.2.1, this section aims to
give an overview of the possible methods for implementing functors.

Compilation to the target language has two distinct possibilities of handling
structures and functors:

• Structures, signatures, functors and functor applications can be compiled away,
a technique called Static Interpretation. [Els99] This approach is taken by
MLKit1. As a result, multiple applications of the same functor result in multiple
generations of the functor’s body, specialized for every combination of parameters.

• Structures can be compiled, keeping the members defined by the structures
together in the target language in a record like manner called a frame. Functors
can then be compiled using generic code, which receives a reference to the frame
representing the structure that is passed as parameter. The code of these functors
dynamically calls the functions inside the structure received as an argument.

The second option is chosen, since it does not duplicate code and is the more
standard way of implementing compilation of the Module language of ML. Also, if
functors are compiled away, the code for each resulting structure can only be generated
when compiling the functor application. This would result in either:

• losing the ability to apply a secure functor outside of secure code

• having the code representing secure functors outside of secure memory.
1Available at http://www.elsman.com/mlkit/
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Choosing the second option means that all members (values or functions) of
functors are implemented as stubs that take a pointer to a frame as an additional
argument.

The stubs can implement any generic code, and use the information inside the
passed frame to call any necessary member defined by the argument structure.

Referencing structures differently in the source and target language raises new
security issues when considering functors. In the source language, structures can
simply be referenced by their name. In the target language however, structures are
translated to frames and are referenced by indicating the location of the frame in
memory locframe.

Section 4.2.3 expands on the representation and references of structures in the
target language, and discusses whether this different representation can be exploited
by an attacker.

4.2.3 Target Representation of Structures
In order to pass structures to functors as an argument, structures are summarized in
the target language as a tuple of structure name, and a list of pointers that represent
the structure members. This target representations are called frames.

These frames reside in the memory section corresponding to their security status,
for example structures corresponding to the SPM have their frame saved in the
protected memory. This prevents tampering with the frames that correspond to secure
structures by the attacker’s context, such as changing the pointers to the different
structure members or changing their order.

The Structure of Frames
Structures in MiniML are either defined using the struct construct or are the result
of functor applications to a structure (Fig. 4.1). Both cases must be represented in
the target language using frames.

Structure S ::= structure id = struct · · · end
|structure id = F (S)

Functor F ::= functor id = struct · · · end

Figure 4.1: Excerpt from the MiniML syntax related to structures.

In their most basic form, when defined using the struct construct, structures are a
collection of values and functions. Frames represent these structures as a combination
of structure name and a list of pointers to these values and functions, sorted in
alphabetic order. For example, the frame representation of the StringEqual structure
is shown in Fig. 4.2. Values or functions inside these structures are now accessible
using knowledge of the frame location and the index of the accessed value in the list
of pointers.
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StringEqual
*equal

Figure 4.2: The frame representation of the StringEqual structure.

To represent functors and the output structure of their application, more infor-
mation has to be saved. For one, functors have an argument, another structure on
which it can depend. To represent the result of a functor application, one needs to
track which structure was passed as an argument, i.e. its frame location, as well as
the values and functions defined by the functor. The functor has access to values
or functions inside the argument structure using the combination of frame location
(locframe) and the index of the necessary member in the list of pointers inside that
frame (indexmem).

When accessing these values or functions, the functor can only compute this index
based on the members specified in the expected argument signature. However, as
mentioned in Section 4.2, the argument structure can define more members than
specified in the argument signature. Clearly the functor should not access these
members. Yet the index of an expected value or function as computed from the
argument signature could be different from the effective index of the corresponding
member in the frame.

As a result, the view of the argument structure to the functor must be trimmed to
that specified the expected signature. Because the signature of the argument structure
as well as the expected signature are known at compile time, this trimming process
can be performed at compile time. The results of this trimming process can be saved
in the mapping iexpected 7→ ieffective.

Concluding, frames that represent the results of functor applications consist of:

1. Functor name

2. A pointer to the frame of the argument structure

3. The trimming map

4. The list of pointers to the output structure’s values and functions, sorted
alphabetically.

The frame representing StringDict from Listing 4.5 is shown in Fig. 4.3.
Because the argument structure is represented by a pointer to its corresponding

frame, a functor can easily be applied to a structure that already results from
functor application. This allows iterative function application without any additional
modifications.

In order to distinguish frames that represent simple structures from those that
represent structures resulting from functor application, the type of frame is tracked
using a single bit right at the start of the frame. For clarity, this value is not shown
in the figures representing frames.

4.2.4 Creating the Frames
Section 4.2.3 specified how frames can represent structures. It also concluded that
in order to avoid tampering with the representation of secure frames, secure frames
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StringDict
*StringEqual
*TrimMap

*emptyDictionary
*insert
*lookup

Figure 4.3: The frame representation of the StringDict structure, the output of
applying functor DictionaryFn to structure StringEqual.

must be located inside the protected memory of the SPM. This section shows that
this restriction means not all frames representing structures can be created at compile
time (statically), but instead some must be created dynamically.

Problem Example
When compilation is done within the context of security all secure code is compiled
first, and only afterwards is the insecure context compiled. This separate compilation
means that the compiled result of secure code is created before compilation of the
insecure context starts.

For example, the earlier example of Listing 4.5 could be split up in a secure part
and an insecure part as shown in Listing 4.7 and Listing 4.8 respectively. The code
representing the functor is compiled first and separately from the code in Listing 4.8.
The frame representation for any structures defined inside Listing 4.7 can be created
when compiling this file. However, as Section 4.2.1 explains, any structure that results
from the application of DictionaryFn is supposed to be secure as well, meaning their
corresponding frames should be saved in secure memory. Not all these applications are
known when compiling Listing 4.7. The application of DictionaryFn to StringEqual
inside Listing 4.8 results in a new secure structure being created after the secure code
was compiled.

Listing 4.7: Secure code fragment: secure.ml.
1 structure StringEqual: EQUAL = struct
2 type t = string
3 fun equal t1 t2 = case String.compare(t1,t2)
4 of EQUAL => true
5 | _ => false
6 end
7 functor DictionaryFn(KeyStruct:EQUAL) :> DICTIONARY where type key =

KeyStruct.t = struct
8 type key = KeyStruct.t
9 type ’a dictionary = (key * ’a) list

10 val emptyDictionary = []
11 fun insert d x y = (x,y)::d
12 fun lookup |[] x = error
13 |(key, value):ds x = if(KeyStruct.equal key x)
14 then value
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15 else (lookup ds x)
16 end

Listing 4.8: Fragment of the insecure context: context.ml.
1 ...
2 structure StringDict = DictionaryFn(StringEqual);

As a consequence, not all frames can be created statically and added to memory at
compile time. Instead they must be added dynamically to preserve the invariant that
all frames representing secure structures are located in secure memory. The locations
of these dynamically created frames in the SPM are kept in a list of frames, called
the f-list.

Dynamically Creating Frames
The problem described above only poses itself with functor applications: the binding
of secure struct expressions to a name always happens in secure code. It’s the
application of a secure functor, which can happen in insecure code as well, that creates
the problem. How the dynamic creation of frames is handled depends on the location
in the source language of the binding of the structure they represent to an identifier.

Binding in secure code: When compiling the secure code, it is possible to create
frames for all structure bindings inside the secure code, regardless whether they
correspond to struct expressions or functor applications. Their frames can
be added dynamically using preprocessing code located inside the SPM. Since
they are added by code inside the SPM, they are guaranteed to be free from
tampering.

Binding in insecure code: The bindings in insecure code require more attention
when processing. When the structure is defined using the struct expression or
the application of an insecure functor, the result will be an insecure structure,
whose frame is allowed to be located in insecure memory. This means that the
frame can be added dynamically using preprocessing code inside the attacker’s
context without any further considerations.
When the structure is defined by the application of a secure functor, the result
is a secure structure. This means that the frame must be saved in secure
memory. The output of compilation of the secure code is already created, so the
compilation must provide a function that the context can call to create the frame.
This function corresponds nicely with the idea of DictionaryFn(StringEqual)
being a function from structure to structure.
For each secure functor Fn, the compiler adds an entry point to the SPM to
a function that allows the context to create a frame that would result from
applying that functor. This function expects two arguments:

• The index in the f-list that corresponds to the frame that represents the
argument of the functor, or the memory location of this frame if the
argument is an insecure structure
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• The trimming map that is applied to the structure.

Using this information, the function validates its input, creates the frame in
secure memory and adds it to the f-list before returning.
The validation step is necessary because the preprocessing code is located in
insecure memory. Because this code section is not protected, these preprocessing
function calls could be manipulated. An attacker could for example apply the
functor Fn to a secure argument structure Sa that does not match the required
signature for functor Fn. This would result in the ill-typed output structure So.
Structure Sa can now access members created by So directly, because both are
located in secure code. By choosing the unsound type assumptions that structure
Sa makes carefully, this could leak information about the implementation of
functor Fn.
Summarizing, when compiling a secure functor the compiler must:

• Add an entry point in the SPM ’s metadata corresponding to a function
that can create frames representing applications of the functor.
• Equip this function with the necessary checks to assure that when the

argument structure is secure, the arguments signature also matches the
expected signature specified by the functor definition. In other words, code
must be added that reads type information about the argument structure
and checks it, using structural typing as specified in Section 3.1.2. This is
done to ensure that functor application on secure structures only succeeds
if the secure structure signature matches with the target signature.

By preserving the order in which functors are applied when adding the frames
dynamically, the compiler knows at compilation time the position of every frame
in the SPM ’s f-list. This way, the index in the f-list is a valid substitute for the
real location locframe in memory.

Implementing Structural Typing Checks
In order to implement structural typing checks when applying secure functors, knowl-
edge about the signatures of structures must be available at runtime. Because every
secure functor has its own dedicated function that creates the frame and performs the
necessary type checks, any necessary knowledge about the target signature can be
hardcoded.

The signatures of structures within the SPM are saved as meta-information linked
together with the frame, called the meta-frame. This meta-frame tracks all type
definitions and value or function definitions present in the signature. It needs to
formalize a target language representation of types, type definitions and value or
function definitions.

The representation of types within the SPM is structured as shown in Fig. 4.4. It
consists of representations for the primitive type int, for type variables ′a, for types
defined in other known structures and for types within the argument structure of a
functor.

• The primitive type int does not need any additional information for identifica-
tion.
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• Type variables ’a are denoted only by an index, which says when it was declared.
This identifies the type variables uniquely, and since type variables are matched
with alpha-equivalence, their name is not important.

• Types Struct.t defined in other known structures S are identified by specifying
the location of the corresponding frame FS and its index in this frames type
definitions.

• Types ArgStruct.t defined in the argument structure of a functor are identified
in a analogous way to types Struct.t. They have a different identifier to mark
that they depend on the argument structure, and the location of the frame in
which they are defined is known only at runtime, so it is not provided.

Then, the representation of two composite types is shown, arrays [] in Fig. 4.4e and
pairs (,) in Fig. 4.4f.

0
(a) Type int.

1 ityvar

(b) Typevar ’a.

2 locframe indextype

(c) Struct.t

3 indextype

(d) ArgStruct.t_i

4 type

(e) Type [].

5 lefttype righttype

(f) Type (,).

Figure 4.4: This figure shows the representation of all different types

name itypevar #typevar implementation opacity
(a) Type Definition

name implementation
(b) Value Definition

Figure 4.5: The representation of type (a) and member definitions (b).

The representation of type definitions is shown in Fig. 4.5a, and that of member
definitions in Fig. 4.5b.

For the signature of an argument frame to match the target-signature, every
type definition in the target signature and every member must have a match in the
meta-frame, as explained in Section 3.1.2:

Matching type definitions First, a match is searched for all type definitions within
the target signature: Searching inside the meta-information for a matching type
definition can be done by scanning the meta-information for a type definition
with the same name. If no type definition with the same name is available, the
two signatures do not match.
If such a type definition is available, check the number of type variables #typevar
it expects. If the type definition in target and candidate signature take a different
number of type variables, the two signatures do not match.
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If the matching type definitions take the same number of type variables, then
the opacity of the type definition in the target signature is of importance. If
the type is not defined opaque, the implementation of the two matching type
definition is matched to ensure the same implementation.

Matching members Next, for all value or function definitions inside the target
signature, a matching definition inside the candidate signature is identified using
the names. In this matching, only the members which correspond to a result of
the trimming map are considered.
When a name match is found, its type is checked. When creating a meta-frame,
any type used in the typing of members is substituted by its implementation
until the first opaque type is encountered. This ensures that checking whether
the type of two members match can be done by checking that either the type
stated in the candidate signature is exactly the same as the type in the target
signature, or it is a type variable that substitutes consistently for the type listed
in the target signature.

Creating Meta-Frames
Implementing structural typing required knowledge about the signatures of structures
to be available at runtime. It introduced meta-frames as a type of meta-information
linked together in memory with the frame. These meta-frames track all type definitions
and member (value or function) definitions present in the structures signature.

The content of these meta-frames can mostly be determined at compile time.
This surely is the case for structures, but it also is the case for functors that are
not modified by a where expression. This means that the function that creates a
frame corresponding to a functor application can largely hardcode the content of the
corresponding meta-frame. When creating a meta-frame, any type used in the typing
of a member is substituted by its implementation until it contains only opaque types,
counting int as an opaque type.

Handling where Expressions Only where expressions of the template where type
t = ArgStruct.t’ can not be processed at compile time. For these expressions,

the compiler must produce the structural typing checks so that they check:

1. That the implementation of type t is in fact ArgStruct.t.
2. What the opaqueness and implementation of type ArgStruct.t is, so

that any reference to type t or ArguStruct.t can be substituted by its
implementation.

4.2.5 Calling Structure Members
Access to any member of a source language structure (i.e. one of its values or functions)
is uniquely determined in the target language using the location (locframe) of the frame
in memory and the index of the member (indexmem) in its list of pointers.

In the source language, all members are either accessible across the security
boundary or strictly accessible only within the same structure, so the same must hold
for the target language. It is easy to make members accessible only from within the
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same structure: they are not given an entry within the list of member pointers, and
their location is not made into an entry point for the SPM.

All other members are accessible across the security boundary. However, as frames
are saved in the memory corresponding to its security status, the attacker’s context is
not able to access frames corresponding to structures within the SPM directly. Worse,
the attacker’s context is not even allowed to know the exact location locframe of these
secure frames.

This is solved by inserting all locframe into the SPM ’s list of frames (f-list) that
was introduced in Section 4.2.4.

Frames that were created in secure code are sorted alphabetically by the identifier
they were bound to and put in the f-list first. This alphabetical ordering is necessary
because changing the order of structure bindings does not break contextual equivalence
at the high-level MiniML language. The frame locations of frames created in insecure
code are appended in the order of their definitions. This means that the specific
mapping of an identifier to the value of its index is known statically.

Anywhere a secure structure is used in the source language, it is represented in
the target language by the locframe pointer or its masking index in the f-list.

To allow context code to access members from secure structures, a getter function
is provided that is located inside the SPM. This getter function corresponds to an
entry point to the SPM. The context can now pass an index in the f-list indexf−list and
an index for the structure member indexmem , as well as any arguments that should to
be passed to the member to this getter function. This getter, because it is located in
secure code, can access the f-list and the frames themselves. It then does the following
things:

• Check whether indexf−list corresponds to a real frame by using the expected
length of the list. Since structures resulting from a functor application are added
dynamically, a situation could arise where the corresponding frame has not yet
been added, or where something went wrong while adding the frame. In this
case the getter function must not allow the indexf−list to be used.

• Use indexf−list to get a locframe for the correct frame.

• Check whether the frame represents a simple structure or the result of functor
application.

• Look up indexmem in the list of pointers within the frame to get a pointer to
the accessed member.

• Call this member with any relevant arguments. In case the frame represents the
result of functor application, the pointer to the frame must be provided as a
parameter when calling the member. The function implementing the member
will uses this frame to determine the argument frame.

• Return any results to the caller.

The getter functions only as an additional level of indirection, so it presumes that
any clearing of flags, registers, masking of values or other precautionary measures
have already been taken care of by the functions that it passes the call to.
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Since all structure values are accessible through this getter function, the separate
structure value stubs do not have to be entry points in the SPM. The getter function
will always be necessary, because insecure functors that call a member in their argument
structure can not hardwire a specific entry point in their generic code.

Indeed, the stubs corresponding to structure members cannot be made entry points
in the SPM, because the source language context is oblivious to whether a structure
bound in secure code was the result of a functor application, or was statically defined.
This corresponds to Listing 4.9 being contextually equivalent to Listing 4.10.

Listing 4.9: Binding StrA and StrB using functor application.
1 functor F(ArgStruct:ArgSig) :> OutputSig = struct
2 val x = ArgStruct.f x
3 end
4 structure StrA = F(Arg1)
5 structure StrB = F(Arg2)

Listing 4.10: Binding StrA and StrB using both static definition and functor applica-
tion.

1 functor F(ArgStruct:ArgSig) :> OutputSig = struct
2 val x = ArgStruct.f x
3 end
4 structure StrA :> OutputSig = struct
5 val x = Arg1.f x
6 end
7 structure StrB = F(Arg2)

If stubs were made entry points in the target language, the difference between
static definition and function application would break contextual equivalence.

• Compiling Listing 4.9 means calling value StrA.x would use the same entry
point as calling StrB.x.

• Compiling Listing 4.10 means calling value StrA.x would use an entry point
different from the one used when calling StrB.x

Clearly, this would result in Listing 4.9 and Listing 4.10 not being contextually
equivalent in the target language.

The addition of a generic getter function that is used to access any value or function
defined on a structure adds an additional level of indirection in calls between the
insecure context and the secure code.

To illustrate this, Fig. 4.6a shows the flow of execution corresponding to a function
call in the simple MiniML language or the work of Agten et al. [ASJP12]. As a
comparison, Fig. 4.6b shows the flow of execution for that same call in the MiniML
language with advanced concepts.
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(a) Execution flow in simple MiniML. (b) Execution flow in the MiniML language.

Figure 4.6: Comparison of execution

4.2.6 Security Consequences
In order to explore the possibility of contextual equivalence breaking due to the
representation of structures differing between source and target language, the possible
combinations of functor and structure security and the relevant security measures are
recapped here case by case.

Secure functor and secure structure The frame representing a structure is lo-
cated in the same part of memory as the structure was defined. Since in this
combination both the functor code and the frame are located inside protected
memory, no tampering is possible. When functor code is called with a reference
to the frame in secure memory, the functor code is able to read the frame directly,
because the functor is part of the SPM. It can then call any member of the
argument structure using the pointer provided by the frame.
If the application of the secure functor is done inside insecure code, the frame
creating function corresponding to this functor must be called, and the types
are checked dynamically using type information in the meta-frame.

Secure functor with insecure structure When a secure functor is applied to an
insecure structure, its result is a secure structure that calls functions provided
by the insecure structure. The resulting structure depends on the insecure
structure. It must call these functions using the same precautions as regular
callbacks to the attacker’s context. Of course the pointers that represent these
functions can be manipulated by the attacker because the frame is now located
in insecure memory. However, because contextually equivalent implementations
of the functor must perform the same callbacks with the same arguments in the
source language in the same order, their target language versions will always use
the same pointers provided by the insecure frame, with the same parameters in
the same order. As a result, the regular precautions, such as clearing registers,
switching the stack and masking values that pass from secure code to the insecure
context, are sufficient to ensure preservation of contextual equivalence of the
functors in the target language.
Additionally, when calling the code in insecure context, the real return address
should be saved in secure memory, and the return address entry in the insecure
stack should be modified to point to the returnback entry point [ASJP12]. This
returnback entry point is listed in the entry points of the SPM. The returnback
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entry point retrieves the last real return address saved in memory, and jumps to
this address.
If the application of the secure functor is done inside insecure code, the frame
creating function corresponding to this functor must be called, and the types
are checked dynamically using type information in the meta-frame.

Insecure functor with insecure structure In this case, both the functor code
and the frame are located inside unprotected memory. The structure that results
from the application is considered to be part of the attacker’s context. The use
of members from the insecure structure by code inside the insecure functor can
happen without any security precautions, as the expected behavior is simply
equivalent to that of an unparametrized structure in the attacker’s context that
depends on another structure of this same context.

Insecure functor with secure structure Because the code of the functor is now
located outside of the SPM, special care needs to be taken when the functor
depends on members of the structure. Because the frame Frs representing the
structure is now in secure memory, the functor cannot manipulate this frame or
perform reads on this frame. In order for insecure functors to call these functions,
an entry point is provided by the SPM, corresponding to a generic getter that
takes as argument a locframe and an indexmem, as well as any arguments that
would otherwise be passed directly. As a result, the generic getter returns the
result of the call to its caller.

4.3 Conclusion

In this chapter, some more advanced concepts of ML were added to the MiniML
language: higher-order functions and functors.

Higher order functions, and the closely related concept of closures, can be introduced
if certain sensitive information, such as environment values and pointer values are
confined to the secure memory. This is done by reusing the earlier concept of
masking [PCP13], and applying it to closures. In order to execute these closures, a
closure-evaluation entry point was introduced.

Functors were added by introducing the target language concept of a frame that
represents structures. Implementing values defined by functors using stubs that expect
an argument representing the parameter structure makes generic translation of these
values in the target language possible. The dichotomy between the security status
of an output structure and where the functor application generating the structure is
located results in the dynamic creation of frames and the added difficulty of structural
type checking functor applications. This is solved by adding meta information in so
called meta-frames capturing any necessary information of types.

Because functors can exist in insecure code, they can be passed frames. These
frames are masked in the same way as closures, which calls for another getter function
to be made available as an entry point into the SPM, so that the values or functions
within frames are callable.

Additionally, because functors can perform callbacks to the insecure context, a
returnback entry point is added that can handle returns from these callbacks.
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Chapter

5
Advanced Concepts: Formalization

First, Section 5.1 of this chapter extends the formalization of MiniML made in
Section 3.1 with the additions described in Chapter 4. Later, Section 5.2 extends
upon the secure compiler as it was formalized in Section 3.3.

5.1 Formal Specification of MiniML

The MiniML language as specified in Chapter 3 consisted of a very limited subset of
the ML language. In Chapter 4, this issue was addressed by adding two more concepts
to the subset:

Higher-order functions The concept of higher-order functions allows that functions
receive other functions as their input, or return functions as their output. By
allowing them to be assigned as a value to a variable, functions essentially
become first-class values, going by the name closure.
To implement closures, the ability to create anonymous functions using the
λ notation is added. This addition makes it possible to define a function as:
λ(x : σ).e. This expression is considered as the construction of a closure.
These expressions are also the only way of constructing a closure, as explained
in Section 4.1. Essentially, when a named function is used as a closure, this is
considered to be syntactic sugar. Its desugared form is an expression in which a
closure is explicitly constructed using the λ-notation to wrap around the named
function.

Functors The idea of functors is that they act as functions from structures to
structures. They provide a way to parametrizing structures.
A parametrized structure is a functor F that, instead of depending on another
structure Str2 by name, receives this structure as an argument. To ensure that
the structure given as an argument defines the necessary bindings, the argument
structure is restricted by a signature Sig. The functor definition defines all
bindings of the parametrized structure. In short, the definition of a functor
corresponds to functor id(ArgStr : Sig1 ):>Sig2 = struct d end.
The application of a functor F to a Str1 , written as F(Str1 ) then results in a
new structure Str2 that can be bound to an identifier. This resulting structure,
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or output structure, can be used like any regular structure. Any time the functor
bindings uses ArgStr .x, Str2 uses Str1 .x.

These additions have important consequences for the way MiniML is compiled.
To be able to describe these consequences, the formalization of MiniML as given in
Chapter 3 is revisited.

5.1.1 Syntax

The additional concepts introduce some new syntactical constructs to the MiniML
syntax. The additions to the Core syntax are seen in Fig. 5.1, additions to the Module
syntax in Fig. 5.2. The Program syntax remains unchanged by the additions from
Chapter 4.

Closures

Closures introduce the λ-expression to the Core syntax, Fig. 5.1. It specifies a number
of argument, their identifiers and their types, as well as the expression that represents
the function body.

Val Exp
e ::= . . .

| λ x.e : (τ1 → τ2) (anonymous function)

Figure 5.1: The Core syntax, extending Fig. 3.1.

Functors

Functors introduce the functor definition and functor application as module expressions
to the Module syntax Fig. 5.2.

A functor definition specifies:

• the functor identifier,

• the identifier ArgStr for the argument structure,

• the signature Sig1 to which the argument structure must comply,

• the signature Sig2 to which the functor’s body must comply,

• and the body d.

A functor application specifies the identifier to which the resulting structure is bound,
the functor identifier, and the identifier for the structure that is passed as an argument.

62



5.1. Formal Specification of MiniML

Mod Exp
me ::= . . .

| functor FunId(ArgStr : SigId1 ):>SigId2 = struct d end (opaque functor)

| functor FunId(ArgStr : SigId1 ):SigId2 = struct d end (trans. functor)

| structure StrId1 = FunId(StrId2 ) (functor application)

Figure 5.2: The Module syntax, extending Fig. 3.2.

5.1.2 Type system

The type system also needs some minor modifications to account for the new concepts.
As earlier, due to its simplicity the Program type system sees no modifications.

First, the concept of a context Γ is extended in Fig. 5.3, so that it can contain
assumptions related to functors: The signature it conforms to, its body of definitions,
and the name of the signature that its argument must conform to.

Context
Γ ::= . . .

| (FunId 7→ {Σ, d, SigId}),Γ (functor definition)

Figure 5.3: Contexts in the MiniML type system, extending Fig. 3.4.

Next, the typing rules are updated, as shown in Fig. 5.4 and Fig. 5.5.

Closures

The addition of closures, as a Core concept, modifies the function application rule
T-App inside the Core typing system in Fig. 5.4, so that it allows arguments or return
values to be of the function type. It also adds the λ-expression typing rule T-Lambda.
This rule describes that a λ-expression is well typed if its defining expression can be
typed to the result type, assuming each argument is of the stated argument type.

Γ ` e1 : τ2 → τ1 Γ ` e2 : τ2
Γ ` e1e2 : τ1

(T-App)

(x : τ2) ∪ Γ ` e : τ1
Γ ` λ x.e : τ2 → τ1

(T-Lambda)

Figure 5.4: Updated typing rules for the Core language, extending Fig. 3.8.
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Functors
Functors are strictly a Module language concept, which means modifications are
limited to Module language, updated in Fig. 5.5. It adds two rules:

T-FunctorDef A rule to type a functor definition. This rule says that the principal
signature of the body (PS(d)) must match with the signature specified in the
ascription of the functor. Furthermore, each definition in the body must be
correctly typed, assuming the well-typedness of all other definitions and the
values defined in the argument structure.

T-FunctorApp A rule that types functor applications. This rule says that a functor
application is well typed if the effective signature of the structure that was passed
as an argument matches to the expected signature. Furthermore, it specifies
that the structure is saved in the context. The output structure’s identifier
maps to the result signature of the functor and the body of the functor after
substituting all references to the argument structure.

Γ[SigId].Σ � PS(d) ∀d1 ∈ d : PS(d \ {d1}) ∪ Γ ` d1

Γ ` StrId : SigId = d→ (StrId 7→ {ES(d), d}),Γ
(T-FunctorDef)

Γ[SigId2].Σ � PS(d) ∀d1 ∈ d : PS(d \ {d1}) ∪ Γ ` d1

Γ ` FunId(ArgStr : SigId1 ) : SigId2 = d→ (FunId 7→ {ES(d), d,SigId1}),Γ
(T-FunctorApp)

Figure 5.5: Updated typing rules for the Module language, extending Fig. 3.9.

5.1.3 Operational Semantics
The updated formalization of MiniML is concluded with a description of the updates
to the operational semantics.

Fist, the concepts of values v is extended in Fig. 5.6 to reflect the addition of
closures as a first class value. A closure is a pair, consisting of an expression and an
environment in which this expression is evaluated. The environment consists of a set
of bindings of identifiers to values, as shown in Fig. 5.7.

Value v ::= . . .

|(e, ρ)

Figure 5.6: Updated concept of ‘values’, extending Fig. 3.10.

Next, the concept of the module table T is extended, as shown in Fig. 5.8 so
that it can keep track of the definitions of functors. The module table maps functor
identifiers to their body of definitions.
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Environment ρ ::= ∅
|(x 7→ v), ρ

Figure 5.7: Environments.

Module Table T ::= . . .

| (FunId) 7→ d, T

Figure 5.8: Updated concept of a ‘module table’, extending Fig. 3.10.

Closures
The addition of closures adds two evaluation rules, one concerning their definition and
one for their application, shown in Fig. 5.9.

E-ClosureDef This rule describes how a λ-expression is evaluated. The λ-expression
creates a closure value, consisting of the expression e and the environment. The
environment contains bindings for all variables used in the defining expression e,
but not defined within the expression. These are called the non-local of free
variables of e, defined as FreeVar(e).

E-ClosureApplication This rule describes how the evaluation of a closure happens.
When the first expression of regular function application is evaluated to a closure
value, it the function application is evaluated to the defining expression with all
the arguments identifiers substituted with their values, and all mappings inside
the environment applied.

ρ = FreeVar(e)
T ` λx.e→ T ` (e, ρ) (E-ClosureDef)

T ` e1 → T ` (e2, ρ)
T ` e1v → [x 7→ ρ ∪ v]e2

(E-ClosureApplication)

Figure 5.9: The evaluation rules concerning closures, extending on Fig. 3.11.

Functors
Adding functors to the language means there must be a way to evaluate functor
definitions and functor applications. This means the additions of functors introduces
two evaluation rules, as described in Fig. 5.10
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E-FunctorDef When a functor definition is encountered, a mapping from the functor
identifier to its definition body should be saved in the module table T.

E-FunctorApp When a structure is bound by a functor application, a mapping for
the structure identifier is added in the module table T.

T ` FunId(ArgStr : SigId1 ) = d,P → (FunId 7→ d),T ` P (E-FunctorDef)

T ` StrId1 = FunId(StrId2 ),P → (StrId1 7→ [ArgStr 7→ StrId2 ]d),T ` P
(E-FunctorApp)

Figure 5.10: The evaluation rules concerning functors, extending on Fig. 3.11 and
Fig. 5.9.

5.2 Formalized Compiler

This section adapts the secure compiler formalized in Section 3.3.1 to the security
measures and concerns introduced with the addition of closures and functors in
Chapter 4. The context within which compilation happens is considered to be
unchanged from that described in Section 3.3.

5.2.1 Formalization
A few additional base types are defined, to represent frames, meta-frames and closures.
These types are the straightforward implementation of their representations as defined
in Chapter 4. 1 The type [0 x i8]* is used to point to names and type {%int, [0
x type]}* is used for lists.

%frame = type {[0 x i8]*, %frame*, i1, {%int, [0 x %int]}*, {%int, [0
x %int (%frame*, i8*)*]}*, {%int, [0 x %int]}*, %metaframe*}

%metaframe = type {{%int, [0 x %typedef]}*, {%int, [0 x %valuedef]}*}
%typedef = type {[0 x i8]*, %int, %int, %type*, i1}
%valuedef = type {[0 x i8]*, %type*}
%type = type {%int, %int, %int}
%closure = type {%int, {%int, [0 x %int]}*, i1}

The processing of module expressions me still occurs in alphabetical order of the
identifiers.

JmeK = Jme1 ,me2 , . . . ,menK → sort(Jme1 K, Jme2 K, . . . , JmenK)
1A frame saves a little more information than mentioned in Chapter 4. Besides the name, target

frame, trimming map and list of values, it also indicates whether the target frame is located in secure
or insecure code, and has a map of the types that it defines to the integers τint that represent them
in LLVM.
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Static structure bindings
Processing structure bindings using the struct expression happens in much the same
way as detailed in Section 3.3.1. The following changes are made:

• As explained in Section 4.2.5, the SPM no longer creates an entry point for every
separate stub. Instead, all values are accessed through the structure value entry
point, which calls the stubs. In this call, the stubs get an additional argument,
a pointer to the frame corresponding with the stubs defining structure.

• Stubs get a pointer to the location where its arguments are saved. The stub
can cast this pointer to the right type and copy all of the arguments to secure
memory.
This way, the LLVM IR type of any stub is exactly the same: %int (%frame
*, i8*)*. Giving all the stubs the same type is beneficial because then their
pointers can all be saved together in an LLVM array: {%int, [0 x %int (%
frame*, i8*)*]}*.

• The code creating a representation of the structure as an LLVM value of type
%frame and corresponding %metaframe is built while processing the structure.
The target frame pointer is set to null in this value, well as the pointer to the
trimming list, since these values are irrelevant for a staticly defined structure.
This code is output by the compiler only later, inside the @initialize function.

The stubs still perform the masking and unmasking, as well as the stack switches or
clearing the registers and flags.

Functor Definitions
Functors are processed much in the same way as static structure bindings.

An additional function is generated, with signature void (%int, i1, i8*). This
function is tasked with dynamically creating frames resulting from functor applications,
as detailed in Section 4.2.4.

• The first integer represents the location of a frame. This frame must correspond
to the argument structure.

• Variable i1 specifies whether the value of the first integer is an address of a frame
in insecure memory, or whether it must interpreted as an index in the f-list.

• The rest of the arguments specify the trimming map.

JFunId(ArgStr : ArgSig) : SigId = dK→
define void @FunId(%int %frame, i1 %ext, i8* %vargs){

call void @initialize()
; The initialize function will initialize the f-list, if it isn’t
initialized already.

br i1 %ext label %External, label %Secure
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External:
; The frame and meta-frame can be built.
; Read the trimming list
; No checking is necessary.
; Add frame to the f-list.
ret void

Secure:
; Get memory location of frame through f-list
; Use meta information associated with the argument frame to
typecheck functor application
; build the frame. The meta-frame can be built statically, because
it uses only information provided by the signature.

}

The body of definitions is translated just like static structure bindings, with a few
notable exceptions:

• Stubs and internal functions that represent values x defined by a functor FunId
take an extra argument: A frame location locframe. The frame f in this location
represents the result of an application of functor FunId.

• The stubs read the frame f at location locframe and can use this to see what
ints represent the types that were created by the functor application. This is
important to type the other arguments.
Indeed, every application of a functor to a structure creates new types. A stub
statically knows that the type of an argument is supposed to be of the nth type
that the structure defines. It does not know which integer is associated with
this type, because this changes from application to application.
However, from the frame that represents a functor application, it can perform a
lookup, using the knowledge that it is the nth type the structure defines, gives
back the associated integer value.

• The internal functions use the frame to look up the frame representing the
argument structure. They need this to call values from argument structure.
Frames contain a boolean with type i1, called the security bit. This signals
whether the frame corresponds to an insecure structure or a secure structure. If
the frame is an insecure structure, additional measures must be taken:

– Mask all arguments.
– Clear the registers and switch the stack pointer.
– Push the return address to the return address stack.
– Change the return address of the call to the returnback entry point.2

– When execution returns, the return value is interpreted as a masked index.

2As the return address is not manipulatable using LLVM, this security measure must be imple-
mented during the compilation from LLVM IR to assembly.
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Functor Applications
Functor applications result only in code creating the LLVM frame representation being
built by the compiler. Just as for static structure bindings, this frame creating code
will be outputted inside the @initialize function.

λ-expressions
λ-expressions will be compiled to their own private function, with a compiler generated
unique name ClosureN . This private function will take a variable amount of arguments.

Jλ x.e : (τ1 → τ2 )K→
define private %int @ClosureN (i1 %sec, {%int, [0 x %int]}* %env, i8* %
vargs){

JeK
} • The first of these arguments is a single bit, which indicates whether the function

was called by the generic closure evaluation point or by other code inside the
secure context. As this value is always set within the secure context, its value
can be trusted.
Depending on this value, the next arguments are interpreted as pointers cast to
int, or as indices in the masking map. It will also determine whether the return
value is a pointer cast to int, or is being masked.

• The other arguments correspond to the arguments x of the λ-expression itself
and the pointer to the environment.

• The compilation of e will be adjusted so that it references variables that are
neither the parameters, nor defined within expression e itself using the their
offset in the environment.

The lambda expression will also lead to the creation of an LLVM object of type
%closure. It is initialized with

• a reference to a list of pointers cast to int, representing the environment;

• a pointer to the function the λ-expression was translated to;

• and a single bit, called the security bit, to indicate whether the closure was
secure or insecure.

Applying closures
When application is performed in secure code on an identifier that represents a closure,
the closure value is loaded. The secure code checks whether the closure value represents
a secure or an insecure closure. This is done using the security bit provided in the
%closure type.

If the closure is secure, the secure context can simply convert the integer in the
closure value to a function pointer and call the function. As arguments, it provides a
value 1 to signal that the arguments are unmasked, followed by the arguments and
the pointer to the environment.
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If the closure is insecure, the secure context masks all arguments it wants to pass.
It then must call the closure evaluation point provided by the insecure context with
the masked arguments and the int representation of the closure value. In this call, the
return address must be changed to the returnback entry point, and the real return
address must be pushed on the return address stack. When execution returns, the
return value must be interpreted as a masking index.

Returnback Entry Point
The returnback entry point, as specified by Agten et al. [ASJP12] is used to return
from callbacks. Whenever a secure function calls a function in insecure memory, either
directly or through the insecure closure evaluation point, the return address is changed
to the returnback entry point and the real return address is pushed on the return
address stack. When the returnback entry point is called, it will pop the first value
off the return pointer stack, and jump to it.

The return address register however can normally not be manipulated from within
LLVM. This is a consequence of LLVM’s target independent nature. This leaves two
options to implement this security measure, both out of the scope of this work:

• Add the security measure when the LLVM backend compiles the LLVM IRsource
to assembly.

• Use the experimental llvm.read_register and llvm.writeregister intrinsics
to perform platform dependent modifications.

Generic Closure Evaluation Entry Point
This is a generic entry point into the SPM provided to evaluate closure values created
within the secure code and passed to the insecure context. It receives an int, which is
the masked index of the closure value, and a pointer to a variable number of arguments.

define %int @GenericClosureEvaluation(%int %closure.mask, i8* %vargs){
%closure.unmask = call %int @unmask(%int %closure.mask)
%type = call %int @unmasktype(%int %closure.mask) ; Check that it
really is a closure
switch %int %type, label %Error [%int 5, label %Continue1]

Continue1:
%closure.valptr = inttoptr %int %closure.unmask to %closure*
%closure = load %closure* %closure.valptr
%closure.ptr = extractvalue %closure %closure, 0
%closure.env = extractvalue %closure %closure, 1
%closure.type = extractvalue %closure %closure, 2;Check that the
closure is a secure closure.
switch i1 %closure.type, label %Error [i1 1, label %Continue2]

Continue2:
%closure.fn = inttoptr %int %closure.ptr to %int (i1, {%int, [0 x
%int]}*, i8*)*
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%ret = call %int %closure.fn(i1 0, {%int, [0 x %int]}* %closure.
env, i8* %vargs)

ret %int %ret

Error:
call void @exit(i32 -1)
unreachable

}

Structure Value Entry Point
The addition of functors required that values were called by specifying the frame that
corresponds to the structure that defines them, and the offset of the value within the
frame. This Structure Value entry point had the following arguments:

• an index in the f-list;

• an offset for the value to be called;

• and any number of arguments meant for the value.

@.flist = private global {%int, [0 x %frame*]}* null

define %int @StructureEntryPoint(%int %findex, %int %index, i8* %vargs
){
%flist.ptr = load {%int, [0 x %frame*]}** @.flist
%flist = load {%int, [0 x %frame*]}* %flist.ptr
%elems = extractvalue {%int, [0 x %frame*]} %flist, 0

%check = icmp ult %int %findex, %elems
br i1 %check, label %Continue, label %Error

Continue:
%frame.ptr2 = getelementptr {%int, [0 x %frame*]}* %flist.ptr, i32
0, i32 1, %int %index

%frame.ptr = load %frame** %frame.ptr2
%frame = load %frame* %frame.ptr
%valuelist.ptr = extractvalue %frame %frame, 4
%valuelist = load {%int, [0 x %int (%frame*, i8*)*]}* %valuelist.
ptr
%list.ptr = getelementptr {%int, [0 x %int (%frame*, i8*)*]}* %
valuelist.ptr, i32 0, i32 1
%elems2 = extractvalue {%int, [0 x %int (%frame*, i8*)*]} %
valuelist, 0
%check2 = icmp ult %int %index, %elems2
br i1 %check2, label %Continue2, label %Error

71



5. Advanced Concepts: Formalization

Continue2:
%val.ptr = getelementptr [0 x %int (%frame*, i8*)*]* %list.ptr,
i32 0, %int %index
%val = load %int (%frame*, i8*)** %val.ptr

%ret = call %int %val(%frame* %frame.ptr,i8* %vargs)

ret %int %ret

Error:
call void @exit(i32 -1)
unreachable

}

5.2.2 Conclusion
The addition of closures and functors to MiniML demands some significant changes
on the inner workings of a secure compilation scheme.

The addition of closures generates changes that are mostly orthogonal to the simpler
compiler sketched in Section 3.3.1. An additional base type is created to represent
a closure. The compiler can determine statically whether a function application in
MiniML happens on a closure value or on a known function, but must perform a
runtime check to know whether the closure is insecure or secure. How the closure
application is then performed ofcourse depends on this runtime check.

Furthermore, the secure compilation of closures makes more demands about the
calling convention between secure code and insecure context.

• The insecure context must provide a representation of an insecure closure as a
single integer. It is up to the insecure context to choose whether this integer is
simply a memory address, or an index in a map, or any other argument passing
scheme.

• The insecure context must provide a way of evaluating any closure using a single
function. This function should show the same functional behavior as the generic
closure evaluation entry point to the SPM, described on Page 70.

The addition of functors makes more fundamental changes in the compiler of
Section 3.3.1. Because changing the binding of a structure identifier from a static
definition to a functor application preserves source-level contextual equivalence (see
Section 4.2.5 on Page 58), the stubs that structure values generate are no longer entry
points to the secure code.

Instead, a structure value entry point is created that can call any value using only
a (masked) reference to a frame, and the offset of the value in the value list within
that frame.
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6
Proving Full Abstraction

Some formal techniques of proving the correctness of a compilation scheme offering
full abstraction exist and the idea of one of these proof techniques, based on trace
semantics, is sketched in Section 6.1.

6.1 Formal Proof Techniques

Recalling from Section 1.1, full abstraction is a compiler property. It states that
contextual equivalence for source-level objects is preserved by and reflected from their
target-level translations.

O1 ' O2 ⇐⇒ O↓1 ' O↓2
Proving full abstraction of a compilation scheme, i.e. proving that it is secure,

requires a proof for soundness and completeness.

Soundness Soundness expresses that the compilation of two source-level objects does
not ‘introduce’ contextual equivalence in the target language. Instead, for the
target-level objects to be contextually equivalent, the source-level objects have
to contextually equivalent already.

O↓1 ' O↓2 =⇒ O1 ' O2

Soundness corresponds closely to the informal notion of compiler correctness.
Indeed, formulating the logically equivalent contrapositive of the soundness
property gives:

O1 6' O2 =⇒ O↓1 6' O↓2

This expresses that two contextually unequivalent source-level objects result
in contextually unequivalent translations. If a compilation scheme would not
be sound, there would exist two contextually unequivalent source-level objects,
whose translations would be contextually equivalent.
Clearly, such a compiler does not function ‘correctly’, as there is a context in
which the source-level objects behave differently, but the translations do not.
One of these translations does not accurately behave like the source-object it is
derived from.
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Completeness Completeness says that all contextually equivalent source-level objects
are translated to contextually equivalent target-level objects. It expresses that
the contextual equivalence of source-level objects, which provides certain security
guarantees, are preserved when compiling.

O1 ' O2 =⇒ O↓1 ' O↓2

As most compilers are expected to be ‘correct’ or sound, the most important part
of the full abstraction proof is the proof of completeness. Proving completeness can
be done using trace semantics and looking at the contrapositive of completeness.

O↓1 6' O↓2 =⇒ O1 6' O2

The following section will detail how trace semantics can be used to prove completeness
of a compilation scheme.

6.1.1 Trace Semantics
Trace semantics [JR05, PC14] for the low-level language describe the behavior of a
program P ↓ within a context O↓C as all interactions that happen between the context
O↓C and the program P ↓. Only the interaction between context O↓C and program P ↓ is
described: this means that trace semantics do not capture any internal operation. The
interactions described correspond with any exchange of data or information between
context O↓C and program P ↓.

Trace semantics produce a trace for a program P ↓ executing within a context O↓C .
A trace is a sequence of labels that correspond with the executed instructions. In
order to restrict the description to the interaction between program P ↓ and context
O↓C , not all instructions are given a label. Instead, only the call and ret instruction
are labeled. Trace semantics track whether the instruction was executed by program
P ↓ or by context O↓C . A possible syntax [PC14] for traces could be the one given by
Fig. 6.1.

Trace T ::= L | T · L L ::= a | τ a ::= g? | g! g := call p(v) | ret v

Figure 6.1: Syntax for trace semantics.
In this syntax, labels are defined to be actions a or τ , where an action a is

observable, and τ is not. It uses ! and ? to track whether the action was performed
in program P ↓ or context O↓C , respectively. In a call, p represents the address that
was called and v the values passed in registers. In a ret, v represents the value in the
return register.

Full abstraction proofs based on trace semantics, for example the ones given by
Patrignani et al. [PCP13, PC14] or Agten et al. [ASJP12], first need to show that
the operational semantics of the target language are fully abstract to the proposed
low-level trace semantics.

This is only the case if the proposed trace semantics in fact do capture all exchange
of information and interactions between context O↓C and program P ↓. For the trace
semantics with syntax given by Fig. 6.1, this is only true if the operational semantics
prohibit the exchange of information between context O↓C and program P ↓ through
memory or registers other than the return value register.
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If the operational semantics do not prohibit the exchange of information through
memory or registers other than the return register, then the syntax of labels must
be changed to a syntax that captures these channels of communication, as stated by
Curien [Cur07] and worked out by Patrignani et al. [PC14].

If the trace semantics are fully abstract w.r.t the operational semantics, then the
proof of full abstraction of the compilation scheme becomes easier. As traces then
fully capture all the interaction of context object O↓c with a target-level object O↓1 ,
two target-level objects O↓1 and O↓2 are indistinguishable with respect to a context
if and only if their traces T1 and T2 are the same. It follows that the existence of
a context O↓C that can distinguish between O↓1 and O↓2 , implies that they produce
different traces T1 and T2 for this context OC .

As a consequence, the contrapositive statement of completeness can be rewritten
formally as:

TracesL(O↓1) 6= TracesL(O↓2) =⇒ O1 6' O2

Proving this statement is simpler than proving the unmodified contrapositive. A
proof for this statement would for example consist of an algorithm that can create
a high-level context OC that is able to distinguish O1 from O2 using their differing
low-level traces T1 and T2. This context OC , called the witness [PCP13], shows that
O1 and O2 aren’t contextually equivalent on the high-level.

If an algorithm exists that for any such pair of traces can construe a high-level con-
text OC , then the existence of this algorithm proves full abstraction of the compilation
scheme.

6.2 Conclusion

A proof of full abstraction of the compilation scheme can be achieved by proving a
low-level trace semantics exists that is fully abstract with the operational semantics of
the low-level language. The trace semantics must capture all exchange of information
or interactions between the low-level program and its context. Curien [Cur07] stated
that one can make sure the labels of trace semantics capture every interaction between
program and context by either:

• making the labels more expressive, so that they can capture the additional
channels of communication that can be used, besides the registers at calls and
the return register at returns;

• modifying the operational semantics, so that they restrict the communication
between context and program to those channels captured by the labels.

In this work, as well as that of Agten et al. [ASJP12] and Patrignani et al. [PCP13],
the compiler modifies the operational semantics so that it indeed limits the exchange
of information in this way.
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Chapter

7
Conclusion

First, this chapter discusses related work in Section 7.1. It continues by discussing
possible future work in section Section 7.2. A conclusion to the work is formulated as
well in Section 7.3

7.1 Related Work

Extensive work trying to preserve the security of a source languages when compiling
exists. The idea of using full abstraction to formalize secure compilation is introduced
by Abadi [Aba99].

Different techniques to preserve security even in the low-level computing model
were developed, for example the use of Adress Space Layout Randomization or ASLR
to prevent reliable memory manipulation by an attacker. This technique randomly
changes the arrangement of important program portions. For example, the location of
the stack, heap and base of the executable might change location within a process’s
address space. This reduces the reliability of an attacker’s view of the process’s address
space, making it harder if not impossible for attackers to reliably jump to certain
exploitable parts of the code, or to reliably overwrite a certain value in memory.

The idea of ASLR catched on, and ASLR saw implementations in common operat-
ing systems such as Windows Vista, OS X Mountain Lion and some Linux distributions.
The idea also raised scientific study, for example by Abadi and Plotkin [AP12] or
Jagadeesan, et al. [JPRR11] and criticism [SPP+04, SYP+09].
Additionally, one can make use of stack canaries to try to detect manipulations by
an attacker. This uses a random value, called a stack canary. This random value is
placed in the memory, before any critical information, for example the return address.
The return address is a critical piece of information that helps to organize control
flow when calling and returning from functions. Even if an attacker can somehow
overwrite the return address in memory, for example using a buffer overflow[EYP10], it
is likely that this will change the value of the stack canary as well. Stack canaries are a
detection technique, as the application can check the value of the stack canary against
the known random value. If this value changed, then the attacker’s manipulation is
detected, and execution can be stopped.

Other techniques work by providing isolation of software components, and introducing
security guarantees to memory access using access control. This way these isolated
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software components cannot be compromised by attacking other software components
that it interacts with. In other words, isolation of software components compartmen-
talizes these software components, in a way that compromising is only possible on an
individual compartment basis. This is the goal of secure compilation.

An example of such research can be found in Agten et al. [ASJP12], who already
provided a secure compilation scheme for an object based language, when access to
memory is restricted based on the value of the program counter. This technique is
called Program Counter Based Access Control, or PCBAC [iDRG]. Later work by
Patrignani et al. [PCP13] introduced additional object oriented concepts to the fully
abstract compilation scheme.

The restricted access of memory can be implemented in hardware [NAD+13,
MAB+13] or using software [SP12, ASAP13]. A recent innovation in restricting access
on a hardware level is Intel R©Software Guard Extensions, or SGX [MAB+13].

The choice between using software or hardware to provide restricted access to the
memory is very important. For example, this choice affects the size of the trusted
computing base or TCB. The TCB of an application contains all components, whether
they are hardware or software, on which the application can only place its trust to
ensure correct execution. Even with fully abstract compilation, security issues in
the TCB could lead to low-level attacks. Consequently, a good TCB is a small, and
verifiable TCB.

7.2 Future Work

The MiniML language as described in Chapter 5 still does not provide the full feature
set of ML. This section proposes some valuable extensions that could be made to the
language.

• Currently, the MiniML language allows only a very restricted set of types to be
communicated between the secure and insecure code. Arrays and pairs can be
used within a structure or to implement an opaque type, but they cannot be
the argument or return value of a publicly available function or the type of a
public field. This is not a very limiting restriction: a structure can be created
to implementing an abstract data type (ADT) that behaves like a list.

However, it could still be a valuable expansion to the language to once again
allow lists and pairs as a basic and first class type in the Module language. As
mentioned in Section 4.1.2, the call-by-value [MTM97] semantics and declarative
style of the ML source language do make this addition more difficult.

For example, when passing a list from the insecure context to a function in
the secure code, in source-level semantics this list is passed as a value, and its
content is immutable.

As the insecure memory is readable by secure code, the target language transla-
tion of the function can read the list directly from the memory, without passing
execution to the insecure code. As the attack described in Section 4.1.2 shows,
this capability can introduce security risks if the inherently mutable memory is
changed during a callback to insecure code.
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• The full-fledged ML language is aware of mutable memory locations, using the
concept of a reference type ref τ . Future work could add this type to MiniML.

• MiniML functors are monadic, they only take a single argument structure. There
are several ways of introducing polyadic functors into MiniML. One would work
with the current version of MiniML: A functor taking multiple arguments could
be decomposed in several functors that take a single argument, and output a
structure for the next functor to be applied to. A drawback to this is that the
current MiniML implementation would make each of the intermediate structures
available.
Possibly nicer ways of implementing this functionality are:

– Implementing polyadic functors as real functors whose stubs take more than
one frame argument. Additional difficulties would represent themselves in
the way structures are represented by frames.

– The addition of substructures to the module language.

• As LLVM IR is not architecture aware, not all necessary security precautions
can be described in LLVM IR. Specifically, methods of manipulating the stack
pointer or the return address are either experimental or nonexistent.
These security precautions are mentioned here, and should be added when
the LLVM IR is eventually compiled to machine code for a Protected Module
Architecture [iDRG] by the LLVM backend.

7.3 Conclusion

The goal of this thesis was to describe a secure compilation scheme for a language
that implements ML-style modules.

• Chapter 2 and Chapter 3 of this thesis describe and formalize a basic version of
MiniML and its secure compilation scheme. Many of the concepts introduced in
literature regarding the secure compilation other, object oriented languages can
be reused with only small modifications.

• Chapter 4 expanded the MiniML language, with Chapter 5 providing a formal-
ization of the additions. While ML is still a larger and more capable language
than the MiniML language of Chapter 5, the final version of the language does
include functors, one of the most important features of ML’s powerful module
language, as well as closures.

Section 5.2 formalized a compilation scheme for these additions, bringing secure
compilation to an ML-style module language, thereby achieving the original goal of
this thesis.
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Appendix

A
LLVM Code

A.1 @mask, @unmask & @unmasktype

This section contains the LLVM IR code for the @mask, @unmask and @unmasktype
functions. These functions handle the masking process. They take an integer

representing a pointer and return an integer representing the index of this pointer in
the mask list, or vice versa.

Listing A.1: LLVM IR for the mask, unmask and unmasktype function.
1 %int = type i64
2
3 declare i8* @malloc(%int)
4 declare void @free(i8*)
5 declare void @exit(i32)
6
7 ;This is the type of elements in the masking list.
8 ;It represents the masking list as a linked list.
9 %masktype = type {%int, %masktype*, %int}

10
11 ;This is a pointer to the initial linked list element.
12 @vtable = private global %masktype* null
13
14 ;The mask() function.
15 ;Because LLVM registers are SSA, it uses a tailrecursive helper

function.
16 define %int @mask(%int %val, %int %type){
17 %ret = tail call %int @mask_rec(%int %val, %int %type, %

masktype** @vtable, %int 0)
18 ret %int %ret
19 }
20
21 define private %int @mask_rec(%int %val, %int %type, %masktype** %cptr

, %int %index){
22 ;Load the current pointer to %masktype* & check if its null.

If it is, add a new record to the linked list.
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23 %current = load %masktype** %cptr
24 %check = icmp eq %masktype* %current, null
25 switch i1 %check, label %Valcheck [i1 1, label %Add]
26
27 ;If the current pointer is null, we’re at the end of the

linked list
28 ;Add a record to the linked list by allocating memory for an

element, and storing the pointer to it in the current pointer
29 ;Store value and initialize pointer of the element to null.
30 Add:
31 %ptr1 = call i8* @malloc(%int 24)
32 %ptr = bitcast i8* %ptr1 to %masktype*
33 store %masktype* %ptr, %masktype** %cptr
34 %locval = getelementptr inbounds %masktype* %ptr, i32

0, i32 0
35 store %int %val, %int* %locval
36 %locptr = getelementptr inbounds %masktype* %ptr, i32

0, i32 1
37 store %masktype* null, %masktype** %locptr
38 %loctype = getelementptr inbounds %masktype* %ptr, i32

0, i32 2
39 store %int %type, %int* %loctype
40 ret %int %index
41
42 ;If the current pointer is allocated, check the value.
43 ;if eq -> jump to the return
44 ;else -> change accumulator, rec jump
45 Valcheck:
46 %locvalcheck = getelementptr inbounds %masktype* %

current, i32 0, i32 0
47 %valcheck = load %int* %locvalcheck
48 %check2 = icmp eq %int %valcheck, %val
49 switch i1 %check2, label %Return [i1 0, label %Loop]
50
51 Loop:
52 ;get pointer to next
53 %nextptr = getelementptr inbounds %masktype* %current,

i32 0, i32 1
54 %newindex = add %int %index, 1
55 %tailindex = tail call %int @mask_rec(%int %val, %int

%type, %masktype** %nextptr, %int %newindex)
56 ret %int %tailindex
57
58 Return:
59 ret %int %index
60 }
61
62 define %int @unmask(%int %index){
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63 %ret = call %int @unmask_rec(%int %index, %masktype** @vtable)
64 ret %int %ret
65 }
66
67 define private %int @unmask_rec(%int %cindex, %masktype** %cpointer){
68 %current = load %masktype** %cpointer ;Get pointer to current

masktype.
69 %check = icmp eq %masktype* %current, null
70 br i1 %check, label %Error, label %ZeroTest
71
72 Error:
73 call void @exit(i32 -1)
74 unreachable
75
76 ZeroTest:
77 %check2 = icmp eq %int %cindex, 0
78 br i1 %check2, label %RetVal, label %Loop
79
80 RetVal:
81 %locval = getelementptr inbounds %masktype* %current,

i32 0, i32 0 ; Get pointer to val pointer
82 %val = load %int* %locval
83 ret %int %val
84
85 Loop:
86 %nextptr = getelementptr inbounds %masktype* %current,

i32 0, i32 1 ; Get pointer to next ll-element pointer.
87 %newindex = sub %int %cindex, 1
88 %ret = call %int @unmask_rec(%int %newindex, %masktype

** %nextptr)
89 ret %int %ret
90 }
91
92 define %int @unmasktype(%int %index){
93 %ret = call %int @unmasktype_rec(%int %index, %masktype**

@vtable)
94 ret %int %ret
95 }
96
97 define private %int @unmasktype_rec(%int %cindex, %masktype** %

cpointer){
98 %current = load %masktype** %cpointer ;Get pointer to current

masktype.
99 %check = icmp eq %masktype* %current, null

100 br i1 %check, label %Error, label %ZeroTest
101
102 Error:
103 call void @exit(i32 -1)
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104 unreachable
105
106 ZeroTest:
107 %check2 = icmp eq %int %cindex, 0
108 br i1 %check2, label %RetVal, label %Loop
109
110 RetVal:
111 %loctype = getelementptr inbounds %masktype* %current,

i32 0, i32 2 ; Get pointer to type pointer
112 %type = load %int* %loctype
113 ret %int %type
114
115 Loop:
116 %nextptr = getelementptr inbounds %masktype* %current,

i32 0, i32 1 ; Get pointer to next ll-element pointer.
117 %newindex = sub %int %cindex, 1
118 %ret = call %int @unmasktype_rec(%int %newindex, %

masktype** %nextptr)
119 ret %int %ret
120 }

A.2 @tyvarcheck

This section contains the LLVM IR code for the @tyvarcheck function. It is tasked
with checking whether two %tyvar values are the same type.

Listing A.2: LLVM IR for the typevarcheck function.
1 @.ImplTable = private constant ; Completed in by compiler
2
3 define private i1 @tyvarcheck(%tyvar* %v1, %tyvar* %v2){
4 Start:
5 %v1.1 = load %tyvar* %v1
6 %v2.1 = load %tyvar* %v2
7 %t1 = extractvalue %tyvar %v1.1, 1
8 %t2 = extractvalue %tyvar %v2.1, 1
9 %equal = icmp eq %int %t1, %t2

10 br i1 %equal, label %Continue, label %Error
11
12 Continue:
13 %basetype = phi %int [%t1, %Start], [%t.1, %Continue]
14 %t = getelementptr [6 x %int]* @.ImplTable, i32 0, %

int %basetype
15 %t.1 = load %int* %t
16 switch %int %t.1, label %Continue [%int 0, label %Ok
17

%int 1, label %Ok
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18
%int 3, label %PairRec

19
%int 4, label %ArrayRec]

20
21 PairRec:
22 %pairptrv1 = extractvalue %tyvar %v1.1, 0
23 %pairptrv1.1 = inttoptr %int %pairptrv1 to %pair*
24 %tyvarlptrv1 = getelementptr inbounds %pair* %

pairptrv1.1, i32 0, i32 0
25 %tyvarlptrv1.1 = load %tyvar** %tyvarlptrv1
26 %tyvarrptrv1 = getelementptr inbounds %pair* %

pairptrv1.1, i32 0, i32 0
27 %tyvarrptrv1.1 = load %tyvar** %tyvarrptrv1
28 %pairptrv2 = extractvalue %tyvar %v2.1, 0
29 %pairptrv2.1 = inttoptr %int %pairptrv2 to %pair*
30 %tyvarlptrv2 = getelementptr inbounds %pair* %

pairptrv2.1, i32 0, i32 0
31 %tyvarlptrv2.1 = load %tyvar** %tyvarlptrv2
32 %tyvarrptrv2 = getelementptr inbounds %pair* %

pairptrv2.1, i32 0, i32 0
33 %tyvarrptrv2.1 = load %tyvar** %tyvarrptrv2
34 call i1 @tyvarcheck(%tyvar* %tyvarlptrv1.1, %tyvar* %

tyvarlptrv2.1)
35 %pairret = call i1 @tyvarcheck(%tyvar* %tyvarrptrv1.1,

%tyvar* %tyvarrptrv2.1)
36 ret i1 %pairret
37
38 ArrayRec:
39 %arrayptrv1 = extractvalue %tyvar %v1.1, 0
40 %arrayptrv1.1 = inttoptr %int %pairptrv1 to %array*
41 %v1length = getelementptr inbounds %array* %

arrayptrv1.1, i32 0, i32 0
42 %v1length.1 = load %int* %v1length
43 %zerolv1 = icmp eq %int 0, %v1length.1
44 %arrayptrv2 = extractvalue %tyvar %v2.1, 0
45 %arrayptrv2.1 = inttoptr %int %pairptrv2 to %array*
46 %v2length = getelementptr inbounds %array* %

arrayptrv2.1, i32 0, i32 0
47 %v2length.1 = load %int* %v2length
48 %zerolv2 = icmp eq %int 0, %v2length.1
49 br i1 %zerolv1, label %Ok, label %ArrayCont1
50
51 ArrayCont1:
52 br i1 %zerolv2, label %Ok, label %ArrayCont2
53
54 ArrayCont2:
55 %v1el1 = getelementptr inbounds %array* %arrayptrv1.1,
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i32 0, i32 1
56 %v1el1.1 = getelementptr [0 x %tyvar*]* %v1el1, i32 0,

i32 0
57 %v1el1.2 = load %tyvar** %v1el1.1
58 %v2el1 = getelementptr inbounds %array* %arrayptrv2.1,

i32 0, i32 1
59 %v2el1.1 = getelementptr [0 x %tyvar*]* %v2el1, i32 0,

i32 0
60 %v2el1.2 = load %tyvar** %v2el1.1
61 %arrayret = call i1 @tyvarcheck(%tyvar* %v1el1.2, %

tyvar* %v2el1.2)
62 ret i1 %arrayret
63
64 Ok:
65 ret i1 1
66
67 Error:
68 call void @exit(i32 -1)
69 unreachable
70 }

A.3 Polymorphic Example

In Listing A.4, the LLVM IRtranslation of Listing A.3 is shown, to illustrate how
polymorphic functions are handled.

Listing A.3: The polymorphic Pair structure.
1 signature PAIRSIG =
2 sig
3 type t a
4 val createPair : a -> a -> t a
5 val getLeft : t a -> a
6 end
7
8 structure Pair :> PAIRSIG =
9 struct

10 type t a = (a,a)
11 fun createPair left right = (left,right)
12 fun getLeft pair = pair.#1
13 end

Listing A.4: Translation of the Pair structure.
1 %int = type i64 ; 1
2 %tyvar = type {%int, %int} ; 2
3 %pair = type {%tyvar*, %tyvar*} ; 3
4 %array = type {%int, [0 x %tyvar*]} ; 4
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5 %Pair.t = type {%pair} ; 5
6
7 declare i8* @malloc(%int)
8 declare void @free(i8*)
9 declare void @exit(i32)

10
11 define private %Pair.t* @Pair.createPair_internal(%tyvar* %p1, %tyvar*

%p2){
12 %ptr = call i8* @malloc(%int 16)
13 %ptr1 = bitcast i8* %ptr to %pair*
14 %fst = getelementptr %pair* %ptr1, i32 0, i32 0 ;%tyvar**
15 store %tyvar* %p1, %tyvar** %fst
16 %snd = getelementptr %pair* %ptr1, i32 0, i32 1 ;%tyvar**
17 store %tyvar* %p2, %tyvar** %snd
18
19 %ptr2 = bitcast %pair* %ptr1 to %Pair.t*
20 ret %Pair.t* %ptr2
21 }
22
23 define %int @Pair.createPair(%int %left, i2 %left.mask, %int %right,

i2 %right.mask){
24 ;We need extra parameters, because we don’t know the type that

was passed. Is it an externally defined type, is it an int, or is
it a mask?

25 %leftTyvar.ptr.1 = call i8* @malloc(%int 16)
26 %leftTyvar.ptr = bitcast i8* %leftTyvar.ptr.1 to %tyvar*
27 switch i2 %left.mask, label %Unmask1 [i2 0, label %External1
28

i2 1, label %Int1]
29 Unmask1:
30 %left.ptr = call %int @unmask(%int %left)
31 %left.type = call %int @unmasktype(%int %left)
32 %leftAsTyvar.unmask.1 = insertvalue %tyvar undef, %int %

left.ptr, 0
33 %leftAsTyvar.unmask.2 = insertvalue %tyvar %

leftAsTyvar.unmask.1, %int %left.type, 1
34 br label %Create1
35
36 External1:
37 %leftAsTyvar.ext.1 = insertvalue %tyvar undef, %int %left, 0
38 %leftAsTyvar.ext.2 = insertvalue %tyvar %leftAsTyvar.ext.1, %

int 0, 1
39 br label %Create1
40
41 Int1:
42 %leftAsTyvar.int.1 = insertvalue %tyvar undef, %int %left, 0
43 %leftAsTyvar.int.2 = insertvalue %tyvar %leftAsTyvar.int.1, %

int 1, 1
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44 br label %Create1
45
46 Create1:
47 %leftAsTyvar = phi %tyvar [%leftAsTyvar.unmask.2, %Unmask1],

[%leftAsTyvar.ext.2, %External1], [%leftAsTyvar.int.2,%Int1]
48 store %tyvar %leftAsTyvar, %tyvar* %leftTyvar.ptr
49
50 %rightTyvar.ptr.1 = call i8* @malloc(%int 16)
51 %rightTyvar.ptr = bitcast i8* %rightTyvar.ptr.1 to %tyvar*
52 switch i2 %right.mask, label %Unmask2 [i2 0, label %External2
53

i2 1, label %Int2]
54
55 Unmask2:
56 %right.ptr = call %int @unmask(%int %right)
57 %right.type = call %int @unmasktype(%int %right)
58 %rightAsTyvar.unmask.1 = insertvalue %tyvar undef, %int %

right.ptr, 0
59 %rightAsTyvar.unmask.2 = insertvalue %tyvar %

rightAsTyvar.unmask.1, %int %right.type, 1
60 br label %Create2
61
62 External2:
63 %rightAsTyvar.ext.1 = insertvalue %tyvar undef, %int %left, 0
64 %rightAsTyvar.ext.2 = insertvalue %tyvar %rightAsTyvar.ext.1,

%int 0, 1
65 br label %Create2
66
67 Int2:
68 %rightAsTyvar.int.1 = insertvalue %tyvar undef, %int %right, 0
69 %rightAsTyvar.int.2 = insertvalue %tyvar %rightAsTyvar.int.1,

%int 1, 1
70 br label %Create2
71
72 Create2:
73 %rightAsTyvar = phi %tyvar [%rightAsTyvar.unmask.2, %Unmask2],

[%rightAsTyvar.ext.2, %External2], [%rightAsTyvar.int.2,%Int2]
74 store %tyvar %rightAsTyvar, %tyvar* %rightTyvar.ptr
75
76 call i1 @tyvarcheck(%tyvar* %leftTyvar.ptr, %tyvar* %

rightTyvar.ptr) ; type equation
77
78 %pair = call %Pair.t* @Pair.createPair_internal(%tyvar* %

leftTyvar.ptr, %tyvar* %rightTyvar.ptr)
79
80 %pair.ptr = ptrtoint %Pair.t* %pair to %int
81 %pair.mask = call %int @mask(%int %pair.ptr, %int 4)
82
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83 ret %int %pair.mask
84 }
85
86 define private %tyvar* @Pair.getLeft_internal(%Pair.t* %pair.ptr){
87 %pair.ptr.1 = bitcast %Pair.t* %pair.ptr to %pair*
88 %left.ptr = getelementptr %pair* %pair.ptr.1, i32 0, i32 0 ;%

tyvar**
89 %left = load %tyvar** %left.ptr
90 ret %tyvar* %left
91 }
92
93 define %int @Pair.getLeft(%int %pair){
94 %pair.unmask = call %int @unmask(%int %pair)
95 %pair.type = call %int @unmasktype(%int %pair)
96 %pair.check = icmp eq %int %pair.type, 5
97 br i1 %pair.check, label %Continue, label %Error
98
99 Continue:

100 %pair.ptr = inttoptr %int %pair.unmask to %Pair.t*
101 %return = call %tyvar* @Pair.getLeft_internal(%Pair.t* %

pair.ptr)
102 %left = load %tyvar* %return
103 %left.addr = extractvalue %tyvar %left, 0
104 %left.type = extractvalue %tyvar %left, 1
105 %retval = call %int @mask(%int %left.addr, %int %left.type)
106 ret %int %retval
107
108 Error:
109 call void @exit(i32 -1)
110 unreachable
111 }
112
113 @.ImplTable = private constant [6 x %int] [%int 0, %int 1, %int 2, %

int 3, %int 4, %int 3]
114
115 define private i1 @tyvarcheck(%tyvar* %v1, %tyvar* %v2){
116 Start:
117 %v1.1 = load %tyvar* %v1
118 %v2.1 = load %tyvar* %v2
119 %t1 = extractvalue %tyvar %v1.1, 1
120 %t2 = extractvalue %tyvar %v2.1, 1
121 %equal = icmp eq %int %t1, %t2
122 br i1 %equal, label %Continue, label %Error
123
124 Continue:
125 %basetype = phi %int [%t1, %Start], [%t.1, %Continue]
126 %t = getelementptr [6 x %int]* @.ImplTable, i32 0, %

int %basetype
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127 %t.1 = load %int* %t
128 switch %int %t.1, label %Continue [%int 0, label %Ok
129

%int 1, label %Ok
130

%int 3, label %PairRec
131

%int 4, label %ArrayRec]
132
133
134 PairRec:
135 %pairptrv1 = extractvalue %tyvar %v1.1, 0
136 %pairptrv1.1 = inttoptr %int %pairptrv1 to %pair*
137 %tyvarlptrv1 = getelementptr inbounds %pair* %

pairptrv1.1, i32 0, i32 0
138 %tyvarlptrv1.1 = load %tyvar** %tyvarlptrv1
139 %tyvarrptrv1 = getelementptr inbounds %pair* %

pairptrv1.1, i32 0, i32 0
140 %tyvarrptrv1.1 = load %tyvar** %tyvarrptrv1
141 %pairptrv2 = extractvalue %tyvar %v2.1, 0
142 %pairptrv2.1 = inttoptr %int %pairptrv2 to %pair*
143 %tyvarlptrv2 = getelementptr inbounds %pair* %

pairptrv2.1, i32 0, i32 0
144 %tyvarlptrv2.1 = load %tyvar** %tyvarlptrv2
145 %tyvarrptrv2 = getelementptr inbounds %pair* %

pairptrv2.1, i32 0, i32 0
146 %tyvarrptrv2.1 = load %tyvar** %tyvarrptrv2
147 call i1 @tyvarcheck(%tyvar* %tyvarlptrv1.1, %tyvar* %

tyvarlptrv2.1)
148 %pairret = call i1 @tyvarcheck(%tyvar* %tyvarrptrv1.1,

%tyvar* %tyvarrptrv2.1)
149 ret i1 %pairret
150
151 ArrayRec:
152 %arrayptrv1 = extractvalue %tyvar %v1.1, 0
153 %arrayptrv1.1 = inttoptr %int %arrayptrv1 to %array*
154 %v1length = getelementptr inbounds %array* %

arrayptrv1.1, i32 0, i32 0
155 %v1length.1 = load %int* %v1length
156 %zerolv1 = icmp eq %int 0, %v1length.1
157 %arrayptrv2 = extractvalue %tyvar %v2.1, 0
158 %arrayptrv2.1 = inttoptr %int %arrayptrv2 to %array*
159 %v2length = getelementptr inbounds %array* %

arrayptrv2.1, i32 0, i32 0
160 %v2length.1 = load %int* %v2length
161 %zerolv2 = icmp eq %int 0, %v2length.1
162 br i1 %zerolv1, label %Ok, label %ArrayCont1
163
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164 ArrayCont1:
165 br i1 %zerolv2, label %Ok, label %ArrayCont2
166
167 ArrayCont2:
168 %v1el1 = getelementptr inbounds %array* %arrayptrv1.1,

i32 0, i32 1
169 %v1el1.1 = getelementptr [0 x %tyvar*]* %v1el1, i32 0,

i32 0
170 %v1el1.2 = load %tyvar** %v1el1.1
171 %v2el1 = getelementptr inbounds %array* %arrayptrv2.1,

i32 0, i32 1
172 %v2el1.1 = getelementptr [0 x %tyvar*]* %v2el1, i32 0,

i32 0
173 %v2el1.2 = load %tyvar** %v2el1.1
174 %arrayret = call i1 @tyvarcheck(%tyvar* %v1el1.2, %

tyvar* %v2el1.2)
175 ret i1 %arrayret
176
177 Ok:
178 ret i1 1
179
180 Error:
181 call void @exit(i32 -1)
182 unreachable
183 }
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Secure Compilation and the ML Language

Matthias van der Hallen

Abstract—The development of software is a daunting
task, even more so when security becomes an issue.
Meanwhile, in today’s technology driven world, com-
puter security is not so much a luxury as it is a
necessity. Nearly all development happens in a high-
level programming language, mainly because it allows
for easier reasoning about the program being written.
This simplification of the thought process is a direct
consequence of the abstract computing model that
high-level languages usually offer to the programmer.

The computing models offered by real-world archi-
tectures differ on many accounts from the one high-level
languages offer. It is during the compilation process
that many bugs are introduced to seemingly correct
software, because the abstract properties of the high-
level language are lost. These bugs can even pop up in
software whose workings were formally verified using
tools such as verifast [1]. The goal of secure compilation
is strengthening the compilation process such that any
security guarantees derived from the abstract comput-
ing model are preserved when compiling.

This work aims to bring secure compilation to a
language with an ML style module system, which uses
signature matching and functors to provide modular-
ization, encapsulation and information hiding.

I. Introduction

The amount of software in today’s world is growing at
rapid rates. As software programs take on a larger and
larger role in our lives, and security sensitive applications
run side by side with software of the garden-variety, it is
important that these applications behave as expected.

Most computer software is written using a high-level
language, for example Java or ML. These high-level lan-
guages offer a computing model that abstracts away many
subtleties of real architectures. These subtleties of the com-
puting model however are reintroduced when the software
is compiled from those high-level languages to a low-level
language. Some of the subtleties that are abstracted away
are:

• The existence of registers and memory.

• The fact that the software code and the values or
objects it creates must all be stored in this same
memory space.

• How the flow of control, i.e. the next command to
be executed, is managed.

• Objects created by software must provide an imple-
mentation, they no longer are algebraic data types
described only by their functionality.

Many of the abstractions allow the programmer to
make certain assumptions about the security of their
software. The confidentiality of certain values and their
integrity, for example. Another abstraction is the atomicity
of a function. A software programmer never assumes that
a function could be executed only partially, taking no real
note of the possible harm that could be done if an attacker
would be able to bypass the part of a function where
permissions are checked.

The reintroduction of these subtleties in the low level
can cause these security assumptions to become void.
Many attacks exist that abuse the way compilation rein-
troduces these subtleties, breaking the security guarantees
assumed by the programmer or any formal verification
software. For example, Y. Erlinsson et al. [2] list a number
of ways that low-level attacks might manipulate control
flow or values whose integrity was guaranteed in on source
level.

These bugs can introduce severe problems, such as
breaking into security sensitive parts of an application
by exploiting its bindings with less secure parts of the
application. Hence, a strengthening of the compilation
process is required. The goal of secure compilation is to
provide compilation that preserves all high-level security
guarantees in the low-level output of the compiler.

II. Problem Setting

Informally, the goal of secure compilation was formu-
lated as compilation that preserves all high-level security
guarantees in the low-level. Contextual equivalence allows
us to formalize what exactly are the security guarantees
offered by the high-level language.

Contextual equivalence [3] does this by introducing an
equivalence relation ' on programs or their components.
Two objects O1 and O2 are contextually equivalent if no
third object OC , called the context, is able to distinguish
between the two components when it is run together with
one of the objects as a programming. The two objects are
thus perfectly substitutable, as their outward behaviour is
the same: they function as one and the same blackbox.

∀OC : OC [O1]→∗ c ⇐⇒ OC [O2]→∗ c



where OC [.] is a program where a certain component
is unspecified. OC [O1] is the program that results from
linking OC with O1, where O1 is used as the unspecified
component.

Contextual equivalence captures security guarantees
such as the public/private access modifier or the atomicity
of function executions. For example, if two components
O1 and O2, containing functions Listing 1 and Listing 2
respectively, are contextually equivalent then the atomicity
of function execution of f is guaranteed. Being able to
break function atomicity would result in the normally un-
reachable return in Listing 2 becoming reachable, which
means substituting O1 by O2 would be observable from
some context object OC .

Listing 1: Simple return
public void f(){

return 0;

}

Listing 2: Unreachable code
public void f(){

return 0;
return 1; //Unreachable

}

Now that ability of contextual equivalence to express
the security guarantees of a language is established, secure
compilation can be formalized by the notion of full abstrac-
tion [4], or the preservation and reflection of contextual
equivalence throughout the compilation process. If O1 is
a high-level component and O↓1 is its low-level result from
compilation, full abstraction can be stated formally as:

∀O1, O2 : O1 ' O2 ⇐⇒ O↓1 ' O↓2

This definition formulates that for any two programs
that are contextually equivalent for any high-level con-
text, their compiled representation should be contextually
equivalent for any low-level context as well. This means
compilation must preserve contextual equivalence, i.e. all
security guarantees provided in the high-level language.

It also says that contextual equivalence should be
reflected. This property is called soundness, and is closely
linked to what is expected of a ‘correct’ compiler. Indeed,
if the results of compilation are contextually equivalent
but the high-level objects are not, there exists a high-level
context OC that can distinguish between O1 and O2, but
without a low-level translation.

III. Contributions

This works introduces a secure compilation scheme for
a language with an ML style module language. The ML
language is a functional language that provides modular-
ization of programs through its module language [5].

A. Structures
One of the primary concepts that the module language

offers is that of a structure. A structure is simply a set of
type and value definitions. Structures allow a programmer
to divide a large program in sets of smaller units containing
closely related type and value definitions. These units de-
pendencies and connections are well-defined and explicit.
An example of a structure is shown in Listing 3.
Listing 3: An example structure showing the definition of
a dictionary in ML.
structure Dictionary =

struct
type dictionary = (string * string) list
val emptyDictionary = []
fun insert d, x, y = (x,y)::d

end

B. Signatures
Another concept of the module language is a signature.

A signature is a set of type declarations and value decla-
rations. It can provide type declarations without giving a
specific implementation. An example of such a signature
is shown in Listing 4.
Listing 4: An example signature showing the declaration
of a dictionary in ML.
signature DICTIONARYSIGNATURE =

sig
type dictionary
val emptyDictionary : dictionary
val insert: dictionary -> string ->

string -> dictionary
end

A signature can describe the interface of a structure.
Any struct expression has a so called principal signature.
When the struct expression is bound to a name using the
structure keyword, it can be ascribed with a signature,
either opaquely or transparent. This causes the interface of
the structure to be type checked, and then altered, based
on the type of ascription. This technique of structural
typing is called signature matching [6].

The interface of view of a structure Str ascribed with
a signature Sig can be computed as follows:

• Values defined in the struct expression but not
declared in the ascribed signature are never avail-
able for code outside the struct expression. They
do not become part of the interface of structure
Str .

• Only types declared in the ascribed signature Sig
are part of the interface of Str . Whether or not
their definition is propagated depends on whether
ascription was opaque or transparent.



C. Functors

The last concept of the module language is a functor.
Functors behave as a function mapping an argument struc-
ture StrIn to output structures StrOut and are used to cre-
ate parametric dependencies of one structure on another.
An example of such a functor is shown in Listing 5.

Listing 5: The Dictionary as a functor. The structures
and signatures that this example depends on are shown
in Listing 6 in Appendix A.
functor DictionaryFn (KeyStruct:EQUAL) :>

DICTIONARY where type key = KeyStruct.t =
struct

type key = KeyStruct.t
type ’a dictionary = (key * ’a) list
val emptyDictionary = []
fun insert d x y = (x,y)::d
fun lookup |[] x = error

|(key,value):ds x = if(
KeyStruct.equal key x)

then value
else (lookup

ds x)
end

structure StringDict = DictionaryFn(StringEqual)
;

1) Functor Definition: Functor definitions specify an
identifier for an argument structure (KeyStruct) and de-
fine an output structure that can use values defined by the
argument structure.

To limit the set of structures allowed as an argument,
a functor also specifies a signature (EQUAL) with which the
argument structure should match. This signature ensures
the functor that the output structure it defines can trust
the values it uses from the argument structure are really
defined by the argument structure.

As functors themselves define an output structure as
well, this output structure can be ascribed with a signa-
ture, in example Listing 5 this is would be the signature
DICTIONARY.

2) Functor Application: On top of being defined, func-
tors are also applied. The application of a functor is shown
in Listing 5 on line 13. A functor application binds the
structure that results as output of a functor to a name. Of
course the functor application must be supplied a concrete
structure as an argument, whose interface matches the
expected argument signature.

3) Secure Compilation: The contribution of this work is
a secure compilation scheme for a language that provides
an ML style module language. In order to be able to
preserve the security guarantees of ML when compiling
to a low-level language, it is assumed that the low-level

architecture offers certain access control semantics for the
computer memory. The same access control semantics as
specified by Agten et al. [3] are chosen (Table I).

This access control semantic assumes that all mem-
ory is split into a protected and an unprotected section.
Protected memory has a further subdivision into a code
section and a data section. A number of memory locations
inside the protected code section are designated to be entry
points. These are the only memory locations to which in-
structions in unprotected memory can jump. Furthermore,
instructions in unprotected memory can only read from or
write to memory locations located in unprotected memory.

From \To Protected Unprotected
Entry Point Code Data

Protected r x r x r w r w x
Unprotected x r w x

TABLE I: Program counter based access control semantics
as specified in Agten et al. [3].

Agten et al. already specify a secure compilation
scheme from a simple high-level language to this low-level
architecture. Patrignani et al. [7] expand on this work,
adding several concepts from object oriented programming.

When a collection of structures, signatures and functors
is compiled with the secure compilation scheme, it is as-
sumed that execution will happen by loading the securely
compiled code to the protected code memory and linking
it with an insecure context that resides in unprotected
memory. Memory allocations in the protected code will
allocate memory inside the protected data section.

In order to securely compile a language with an ML
style module system, it is important to preserve the basic
security precautions that were described by Agten et al. [3].
These are summarized here shortly:

• A single entry point is created for every funcion.
The access control semantics of the low-level ar-
chitecture make sure that control flow can only
switch from the insecure code to the secure code by
passing through such an entry point. This protects
the ‘atomicity’ of function execution.

• A shadow stack should be used for all stack oper-
ations done in the secure code. When control flow
switches from the insecure context to the secure
module or back, the stack pointer and the shadow
stack pointer should be switched.

• When control flow passes from the secure code to
the insecure code, all flags and all registers not used
to pass the return value should be cleared, with the
exception of callee saved registers.

• A reordering of function definitions does not break
contextual equivalence. Therefore, the order in



which functions are defined in the low-level lan-
guage should not provide a way to distinguish
between the compilation results of contextually
equivalent modules.

The compilation scheme has to be modified to allow for
an ML style module language.

Masking
The first modification consists of adding the
technique of masking, as introduced by Patrig-
nani et al. [7]. This means that values created
in the secure code do not leave the secure
memory, as this might provide details over
their implementation, and neither do direct
memory pointers. ML allows for opaque types,
meaning two structures that provide the same
type but with a different implementation are
contextually equivalent. As a result these im-
plementation must be hidden from the insecure
context. Instead of passing the values directly
or passing a pointer to their memory location,
every value created in secure code but passed
to the insecure context is represented within
insecure context as its index in a masking list.

Typing
As a consequence of ML allowing for opaque
types, simply having the correct structural
implementation does not mean a function can
operate on a certain value. For this to be
allowed, the value must also be of the correct
opaque type, which means the masking must
keep track of type information.

Frames
Because functors are not hidden on source-
level from the insecure code, the insecure code
can create new structures by applying func-
tors. Security-wise, the resulting structures are
still expected to be secured in the same way
as if they were written in secure code itself.
For example, applying the dictionary from
Listing 5 should not result in anyone being
able to tell whether the functor implements the
dictionary type using a list of pairs, as in the
case of the example, or a pair of lists.
As a result, it is not adequate to statically
compile away functor applications. This means
that the compiled secure code must provide a
way to dynamically create new structures that
correspond to functor applications.
This is achieved by compiling functors values
using generic code that takes an additional
parameter: the argument structure that the
functor was applied to. For this, structures
need to have a runtime representation con-
taining a list with pointers to all their value
definitions.

These runtime representations are called
frames, and are collected in a list called the
f-list. The insecure code can refer to frames
using their index in the f-list

Trimming Map
Code that represents the functor can now ad-
dress values of the argument structure using
the list of pointers inside the argument frame,
and an offset. Because the argument structure
can define more values than the expected sig-
nature declares, the offset of a value needed
by the functor within the argument structure
might differ from the offset of this same value
in the argument signature. To solve this, a
mapping between these offsets must be estab-
lished as well, called the trimming map. This
is unique for every functor application.

Functor Applications
Functor applications introduce new structures.
That these structures are the result of functor
applications is not a distinguishable feature
in the ML source language. When a program
defines a structure statically, this program is
still contextually equivalent to a program that
defines this structure as the result of a functor
application. Note that this introduces two new
problems:
• These structures can be used as an ar-

gument to a functor again. This means
that a frame must be created for these
structures as well. This has to hap-
pen dynamically, checking the argu-
ment structure to make sure that it
matches with the expected signature.

• When calling a value of a structure
resulting from functor application, this
call is not allowed to look different from
calls that acces a value defined in a
static structure defintion. This means
that all value calls must include a frame
as an argument.
This frame can only be the frame that
represents the structure containing the
value itself. Frames that represent the
output structure of functor application
must contain a reference to the frame
that represents the argument of the
functor application, so that the generic
code representing the functor still gets
a reference to the argument frame.
As a result, all frames now look as
follows, with an empty trimming map
and pointer if the frame represents a
statically defined structure.

Ptr to argument frame trimming map list of values



Ordering of Structure Bindings
The order in which structures are defined pro-
vides no way to distinguish two ML programs.
As a result, the order of frames in the f-list
has to be alphabetical for any frames that
correspond to structures defined within the
secure code.
Frames that represent structures resulting
from functor applications within insecure con-
text are appended in the order of their bind-
ings.

A Single Entry Point
Whether a structure was defined using functor
application or statically is not a distinguishing
feature in ML. This has an effect on how
structure values should be called.
If the functions that represent these values
were direct entry points to the module, two
structures that both result from functor appli-
cations would share the same entry points. The
inverse is true as well: sharing entry points is
a proof of being defined using functor applica-
tion.
This can be used in the low-level to distinguish
between two programs, where one defines a
structure using functor application and the
other writes out the structure definition stati-
cally.
As a result, only a single entry point into the
module is created. All values now share the
same entry point. Specifying which value is
called can be done by providing an index in
the f-list, uniquely defining a structure, and
the offset for the value within the list of values
stored in the frame.

Implementing these checks and security precautions
results in a secure compilation scheme for a language
implementing an ML style module system.

IV. Related Work

Lots of work trying to preserve the security of a source
languages when compiling exists. The idea of using full
abstraction to formalize secure compilation is introduced
by Abadi [4].

Different techniques to preserve security were devel-
oped, for example using Adress Space Layout Randomi-
sation or ASLR.The idea of ASLR catched on, and ASLR
saw implementations in common operating systems such
as Windows Vista, OS X Mountain Lion and some Linux
distributions. The idea also raised scientific study, for
example by Abadi and Plotkin [8] or Jagadeesan, et al. [9]
and criticism [10], [11].

Other techniques work by introducing security guar-
antees to memory access. For example, Agten et al. [3]

already provide a secure compilation scheme for an ob-
ject based language, when access to memory is restricted
based on the value of the program counter. This tech-
nique is called Program Counter Based Access Control, or
PCBAC [12]. Later work by Patrignani et al. [7] introduced
additional object oriented concepts to the fully abstract
compilation scheme.

The restricted access of memory can be implemented in
hardware [13], [14] or using software [15], [16]. This choice
affects the size of the trusted computing base or TCB.
Even with fully abstract compilation, security issues in the
TCB could lead to low-level attacks. A recent innovation
in restricting access on a hardware level is Intel R©Software
Guard Extensions, or SGX [14].

V. Conclusion

This work aims to bring a secure compilation scheme
to languages that implement an ML style module system.
This work shows that such a secure compilation scheme
is possible on a low-level architecture providing certain
access control semantics as specified by Agten et al. [3].
This same architecture was already shown to allow for
secure compilation of several advanced OOP concepts by
Patrignani et al. [7].



Appendix A
Additional Code

Listing 6: The auxilary signatures and structures for the
functor example of Listing 5 on Page 3.
signature DICTIONARY =

sig
type key
type ’a dictionary
val emptyDictionary : ’a dictionary
val insert : ’a dictionary -> key -> ’a

-> ’a dictionary
val lookup : ’a dictionary -> key -> ’a

end

signature EQUAL =
sig

type t
val equal : t -> t -> bool

end

structure StringEqual: EQUAL =
struct

type t = string
fun equal t1 t2 = case String.compare(t1,

t2)
of EQUAL => true
| _ => false

end
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