
ARENBERG DOCTORAL SCHOOL
Faculty of Engineering Science

Towards a Higher Level of
Abstraction for Knowledge
Representation Languages

Matthias Van der Hallen

Dissertation presented in partial
fulfillment of the requirements for the

degree of Doctor of Engineering
Science (PhD): Computer Science

August 2020

Supervisors:
Prof. dr. ir. G. Janssens
Prof. dr. M. Denecker

Towards a Higher Level of Abstraction for
Knowledge Representation Languages

Matthias VAN DER HALLEN

Examination committee:
Prof. dr. ir. P. Wollants, chair
Prof. dr. ir. G. Janssens, supervisor
Prof. dr. M. Denecker, co-supervisor
Prof. dr. ir. T. Schrijvers
Prof. dr. B. Jacobs
Prof. dr. B. Bogaerts
(Vrije Universiteit Brussels)

Prof. dr. M. Leuschel
(Heinrich Heine University Düsseldorf)

Dissertation presented in partial
fulfillment of the requirements for
the degree of Doctor of Engineering
Science (PhD): Computer Science

August 2020

© 2020 KU Leuven – Faculty of Engineering Science
Uitgegeven in eigen beheer, Matthias Van der Hallen, Celestijnenlaan 200A box 2402, B-3001 Leuven (Belgium)

Alle rechten voorbehouden. Niets uit deze uitgave mag worden vermenigvuldigd en/of openbaar gemaakt worden
door middel van druk, fotokopie, microfilm, elektronisch of op welke andere wijze ook zonder voorafgaande
schriftelijke toestemming van de uitgever.

All rights reserved. No part of the publication may be reproduced in any form by print, photoprint, microfilm,
electronic or any other means without written permission from the publisher.

Preface

The end of a chapter in my life, fittingly, starts with a preface. This allows me
to reflect on my experiences these last few years and to take a moment to thank
the people that provided indispensable helping hands in my journey.

A first word of gratitude is owed to my supervisors. Gerda, you were a great
promotor: tirelessly reading my texts, always ready with advice and endless in
patience. It has been a pleasure working with you, towards my PhD, but also
in educational councils and in the declarative languages course. This course
made me contact you about PhD opportunities and I was lucky enough to be a
teaching assistant for it for more than 4 yours. Marc, throughout the years you
have consistently amazed me with the boundless enthusiasm and dedication you
showed to your field of research. While intimidating at times, those qualities
have helped me greatly and provide a never-ending source of ideas for the
students that you supervise as a (in my case, co-) promotor. Maurice, I want
to thank you too for finding taking the time to proof-read many of my texts.

Next, I want to thank my jury, for finding the time to read this PhD thesis.
Your remarks and suggestions were greatly appreciated, as is your flexibility
towards an online or face-to-face defense.

I thank also the Research Foundation - Flanders for granting me a four year
PhD fellowship for strategic basic research.

In all these years, I have also had the pleasure to work with fantastic colleagues;
in no specific order I want to thank them as well: Bart, Pieter, Joachim, Jo,
Ingmar, Ruben, Laurent, Tim, Simon, Pierre, and Ðorđe. We have had
many interesting discussions (work and non-work related) and you are in large
part to blame for my collection of board games.

Whenever I had to blow off steam, my friends were there for me. As trying
to name them all would make this preface prohibitively long, I will simply
name some (sometimes overlapping) groups: Fintro, VTK 13-14 (Fuse) and

i

ii PREFACE

Revue, KU Leuven Triathlon 16-18 and Team Ploeg, thank you for being
such wonderful friends.

Lastly, yet foremost, I want to thank my family. Mom and dad, thank you
for your unconditional love, for being there every step along the way for the
last 28 years. Thank you, Sara and Wim, and Peter. As my older siblings(-
in-law), I have always looked up to you and you have always been there1; be it
advice, horrible tales from my youth or simple encouragement, standing in your
footsteps has helped me stand firm. Thank you Mare and Noor, my nieces,
we all spoil you way too much. Thank you, Elke, for being there for me and
enduring me, even in lockdown. I love you.

1Yes, Wim, you too.

Abstract

Every day, many problems are solved using computers. However, before a
computer can solve a problem for us, we must transfer the required knowledge
to the computer, using a language both the computer and we understand.
While imperative languages follow an approach that instructs the computer
step-by-step how to solve the problem, specification languages such as the FO(·)
language and Answer Set Programming (ASP) specify only the knowledge
involved in a problem, leaving it up to the computer to find out how to solve it.

The distinction between instructing step-by-step and representing knowledge is
fundamental in the field of “Knowledge Representation and Reasoning”. It is
of great importance for this field that we can specify the knowledge involved
in as many interesting problems as possible, in a way that is both clear and
maintainable.

In this thesis, we explore how to improve the level of abstraction of knowledge
representation languages based on logic so as to make them more expressive
and reduce duplication, so that they are more readable and maintainable.

First, we analyze the graph mining problem and show that it features second-
order and higher-order logic aspects. We show how these aspects can be encoded
or simulated using solvers limited to first-order logic, and discuss the limitations
and disadvantages of such encoding techniques.

The presence of second-order logic aspects in the graph mining, and the
incompatibility of these aspects with solvers developed for first-order logic,
such as the IDP system, inspire us to assemble a more extensive collection of
problems with second-order aspects.

Motivated by the problems collected, we present a typed second-order
specification language. We discuss the implementation of SOGrounder, a
system that can translate these typed second-order specifications to Quantified
Boolean Formulas (QBF), which in turn can be solved by existing QBF solvers.

iii

iv ABSTRACT

We show that the approach shows promise with respect to an approach based
on encoding second-order constraints for Answer Set Programming using the
saturation technique.

Finally, we extend our typed second-order language with language constructs
serving to reduce the duplication involved in the knowledge specification of
many problems. We specifically support a recurrent pattern that we discern in
second-order logic specification.

Summarized, this text explores how second-order logic can be used to make
specification languages more expressive, both computationally as well as
practically.

Beknopte samenvatting

Elke dag lossen computers veel problemen voor ons op. Maar vooraleer
een computer een probleem kan oplossen, moeten mensen de vereiste kennis
overbrengen op de computer. Hiervoor maken we gebruik van een taal die
zowel de computer als wij begrijpen. Imperatieve talen baseren hun aanpak op
het stap-voor-stap vastleggen hoe de computer het probleem moet aanpakken.
Specificatie talen zoals FO(·) en Answer Set Programming (ASP), beschrijven
dan weer alleen de kennis aanwezig in het probleem zelf, en laten het over aan
de computer om uit te zoeken hoe het probleem opgelost kan worden.

Het onderscheid tussen het stap-voor-stap instrueren en het beschrijven
van kennis is fundamenteel voor het onderzoeksveld “Kennisrepresentatie en
redeneren”. Voor dit onderzoeksdomein is het van groot belang dat we de kennis
onderliggend aan zo veel mogelijk interessante problemen kunnen beschrijven,
en dat op een manier die zowel helder is als gemakkelijk om te onderhouden.

In deze thesis onderzoeken we hoe we het abstractie niveau van kennisrepresen-
tatie talen gebaseerd op logica kunnen verbeteren. We beogen hierbij om ze
zowel expressiever te maken als om de hoeveelheid herhaling te verminderen.
Dit moet leiden tot talen die enerzijds gemakkelijker leesbaar zijn en beter te
begrijpen, en anderzijds ook specificaties opleveren die beter te onderhouden
zijn.

Allereerst bestuderen we het grafe ontginningsprobleem en tonen we aan dat
dit probleem inherent aspecten bevat van tweede-orde en hogere-orde logica.
We tonen hoe deze aspecten geëncodeerd of gesimuleerd kunnen worden met
oplossers voor eerste-orde logica, en belichten de beperkingen en nadelen van
zulke technieken.

De aanwezigheid van tweede-orde logica aspecten in het grafe ontgin-
ningsprobleem, en de incompatibiliteit van dit soort aspecten met oplossers
gemaakt voor eerste-orde logica zoals het IDP systeem, inspireert ons om een
uitgebreidere verzameling aan problemen met tweede-orde logica aspecten samen

v

vi BEKNOPTE SAMENVATTING

te stellen.

Gemotiveerd door deze verzamelde problemen, presenteren we een getypeerde
tweede-orde specificatie taal. Vervolgens bespreken we de implementatie van
SOGrounder, een systeem dat deze getypeerde tweede-orde specificaties kan
vertalen naar Quantified Boolean Formulas (QBF). Deze kunnen op hun beurt
opgelost worden door bestaande QBF oplossers. We tonen aan dat deze aanpak
beloftevolle resultaten vertoont in vergelijking met een aanpak gebaseerd op
het encoderen van tweede-orde aspecten in Answer Set Programming, waar we
gebruik maken van een techniek met de naam saturation.

Tot slot breiden we onze tweede-orde specificatie taal uit met taalconstructies
die er toe dienen om de herhaling in veel kennis specificaties weg te werken.
Specifiek bieden we ook ondersteuning voor een veel voorkomend patroon dat
we onderscheiden in specificaties gebaseerd op tweede-orde logica.

Samengevat onderzoekt deze tekst hoe tweede-orde logica gebruikt kan worden
om specificatie talen expressiever te maken, zowel op theoretisch als op praktisch
vlak.

List of Abbreviations

AFT Approximation Fixpoint Theory. 81, 84

AI Artificial Intelligence. 1

ASP Answer Set Programming. 3, 7, 15–18, 28, 29, 40, 41, 47, 49, 52, 56, 59,
62, 70, 80, 81, 127–129

CDCL Conflict-Driven Clause Learning. 18

CLP Constraint Logic Programming. 66

coNP co-Non-deterministic Polynomial Class. 33, 35, 120

CP Constraint Programming. 16, 66

CSP Constraint Satisfaction Problem. 109

CTL Computation Tree Logic. 2, 93

DMN Decision Model and Notation. 2

DRY “Do not Repeat Yourself”, a software development principle. 7

EXPTIME The Exponential Time Complexity class. 86

FO First-Order. 3, 23, 29, 30, 66, 72

IDP . 4, 15, 17, 18, 23, 24, 28–31, 33, 40, 47–51, 53, 54, 56, 58–60, 62, 86, 88,
115

KBS Knowledge Base System. 4

KR Knowledge Representation. 29, 59, 60

vii

viii LIST OF ABBREVIATIONS

KRR Knowledge Representation and Reasoning. 1

LTL Linear Temporal Logic. 2, 92

NP Non-deterministic Polynomial Class. 13, 33, 35, 65, 71, 115, 120, 122, 127

PH The Polynomial Hierarchy. 7, 73, 115, 117

QBF Quantified Boolean Formula. 7, 50–52, 61, 63, 75, 89, 117, 128

QCIR Quantified CIRcuit format. 75

SAT SATisfiable Formulas. 50, 52, 61, 66

SO Second-Order. 7, 65

UMLS Unified Medical Language System, an ontology for medical terminology.
2

List of Symbols

∆ A definition ∆.

Γ A typing context.

≤p The precision order.

≤t The truth order.

G A set of graphs ‘G’.

G A graph ‘G’, see also P.

I An interpretation or structure.

P A graph ‘P’, short for ‘pattern’.

Tn A theory with name ‘n’.

|= The satisfaction relation.

d A tuple of d.

φ, ψ Formulas.

σ(T) The signature of a theory.

` The typing relation.

d A domain element.

f A function symbol f.

P A predicate symbol P.

t A term t.

V A vocabulary V.

x A variable x.

ix

Contents

Abstract iii

Beknopte samenvatting v

List of Abbreviations viii

List of Symbols ix

Contents xi

List of Figures xv

List of Tables xvii

1 Introduction 1
1.1 Overview . 2

1.1.1 Languages . 2
1.1.2 Inferences . 3
1.1.3 Systems . 4

1.2 Contributions . 4

2 Preliminaries 9
2.1 First-Order Logic: Syntax and Semantics 9

2.1.1 Syntax . 9
2.1.2 Semantics . 10

2.2 Expressivity of Logics . 13

3 Analysis of Graph Mining 14
3.1 Introduction . 14
3.2 Preliminaries . 16
3.3 Formalization of graph mining 18

xi

xii CONTENTS

3.3.1 Patterns . 18
3.3.2 Canonical patterns . 20

3.4 A higher-order specification of Graph Mining 21
3.4.1 Representation of graphs 22
3.4.2 A higher-order specification 23
3.4.3 Desired properties of graph mining specifications 27

3.5 First-order encodings of Graph Mining 29
3.5.1 IDP . 29
3.5.2 ASP . 40
3.5.3 Comparative Summary 47
3.5.4 Performance experiments 47

3.6 Solver Techniques . 50
3.6.1 Nested Solvers . 51
3.6.2 Lazy Grounding . 56

3.7 Discussion and Future Work . 59
3.7.1 Grounding to QBF . 62
3.7.2 Lazy Grounding . 63

3.8 Conclusion . 63

4 A Second-Order Language and its Grounder 65
4.1 Introduction and Related Work 65
4.2 Second-Order Logic . 66

4.2.1 Syntax . 67
4.2.2 Semantics . 68
4.2.3 SO Logic as a Modeling Language 69

4.3 QBF . 70
4.4 Implementation . 71

4.4.1 Advanced grounding techniques 74
4.4.2 Grounding to QCIR . 75

4.5 Experiments . 76
4.6 Conclusion and Future Work 78

5 Semantics of Templates 79
5.1 Introduction . 80
5.2 Related Work . 81
5.3 Preliminaries: Rules and definitions 82

5.3.1 Semantics of definitions 83
5.4 Templates and Template Libraries 84

5.4.1 The Complexity of Templates 85
5.4.2 Template libraries for Existential Second-Order Logic . 86

5.5 Conclusion . 88

6 A Second-Order Pattern: Integrating inferences in logic 89

CONTENTS xiii

6.1 Introduction . 89
6.1.1 Examples . 91

6.2 Theoretical foundation . 97
6.2.1 Semantics . 102
6.2.2 Expressivity . 103

6.3 Implementation . 106
6.3.1 Parametrized Theories and their Applications 106
6.3.2 Quantifying over Variant Worlds 107

6.4 Use case: Zebra Puzzle . 109
6.5 Conclusion . 115

7 An Overview of Problems with Second-Order Constraints 117
7.1 Minimal Inconsistent Cores . 118
7.2 Optimal Stable Matching Problem 120
7.3 Determining Path Vapnik-Chervonenkis Dimension 123
7.4 Secure Sets . 125
7.5 Conclusion . 126

8 Conclusion 127
8.1 Future Work . 129

Bibliography 131

Curriculum Vitae 145

List of Figures

1.1 Structure of the text. 6

3.1 An illustrative graph mining instance 19
3.2 Pattern candidates for the graph mining instance shown in

Figure 3.1. 20
3.3 A mapping of candidate 3.2b to the negative example 3.1b. . . 20
3.4 Possible patterns. 21
3.5 (Repeat) A graph mining instance with (N+ = 1, N− = 0). . . 38
3.6 A subset of the pattern space for Figure 3.5. 39
3.7 Cumulative run times for the Yoshida dataset. 49
3.8 Cumulative ASP run time for the mutagenesis dataset. 49
3.9 The three different strategies proposed for subsolvers. 54
3.10 Cumulative runtimes and time spent per pattern by IDP for the

three datasets with only positive examples. 57
3.11 Histograms of time needed to mine the next pattern by IDP.

Only strictly positive datasets were used. 60
3.12 Grounding size (#lits) and memory usage (kilobytes) of Ground

& Solve and Lazy Grounding approaches in Mutagenesis dataset. 61
3.13 Boxplot: # of example graphs inspected before accepting or

refuting a pattern candidate. 61

5.1 The FO(ID∗), ESO(ID∗) and ASO(ID∗) fragments of SO(ID∗). 87

6.1 Visual representation of the second-order pattern. 90
6.2 Example transition system for temporal logics. 93

7.1 An example graph illustrating secure sets. 125

xv

List of Tables

2.1 Kleene’s truth table. 12

3.1 Summary of the desirable properties in IDP and ASP. 47

4.1 Overview of grounding times and sizes for strategic companies of
size n. 77

4.2 Overview of solving times for SOGrounder and IS (QDimacs),
Clingo (ASP), and GhostQ (QCIR). 77

4.3 Overview of SOGrounder’s grounding times (ms) with and
without binary quantification, 5 min time limit. 78

6.1 Substitutions for the application ∗Tcolor(Graph, Homomorphism,

Used). 107
6.2 Substitutions for the variant world quantification �Tcolor(Graph

:{(n1,n2)|t }, Homomorphism:{}, Used:{}):φ. 108
6.3 Solution of the simple Pasta puzzle. 110

7.1 The ∗ operation on labels, modeling the relationship between a
directed edge and its start and end vertex. 118

xvii

Chapter 1

Introduction

Mankind has a tendency to take things and use them in such a way as to make
life easier for itself. That is why people systematically try to automate things
using computers. However, getting a computer to do what you want it to is not
always as straightforward. That is why Artificial Intelligence (AI) has devoted
research into making this easier.

In particular, the field of Knowledge Representation and Reasoning (KRR)
studies languages, which we will call modeling languages, that can specify the
knowledge in a domain and devises methodologies and tools that allow reasoning
over the knowledge specified in these languages. Using such languages, we make
knowledge available to the computer and, instead of telling it exactly what to do,
allow the computer to apply the reasoning methodologies and tools to perform
automated reasoning and to solve our problems. We call these automated
reasoning procedures inferences.

A very common example of knowledge that is often specified in a modeling
language is the knowledge behind scheduling. For scheduling, a number of
different resources such as classrooms, lectures, teachers or hours must be
matched. This matching must conform to certain constraints that express
practical limitations (“Only one concurrent lecture per classroom”), labour laws
(“No teacher teaches more than three consecutive lectures”), etc. One scenario
in which we want to automate reasoning is when we are given a certain matching
and are tasked with verifying whether all constraints are indeed satisfied. This
automated reasoning task is called the model checking inference.

Many modeling languages have been proposed, some even before we could rely
on computers to do the heavy lifting of reasoning over them, for example First-

1

2 INTRODUCTION

Order Logic (FOL). Although it predates computers, it still serves as a powerful
foundation for modeling languages such as the FO(·) language [36], and logic in
general is closely linked to the study of complexity and computability through
the field of descriptive complexity [79]. Likewise, many different reasoning tasks,
beyond the aforementioned model checking, have been defined and implemented
in tooling. In the next section, we give a non-exhaustive overview of different
languages, inferences and systems.

1.1 Overview

1.1.1 Languages

When studying how to express human knowledge, it rapidly becomes evident
that knowledge comes in many different forms. For example, some knowledge
is objective and universal (e.g. “All men are mortal”), other knowledge is
dependent on time (e.g. “I am currently not hungry”) or on other people’s
knowledge. Consider, as an example thereof, the joke where two mathematicians
are asked whether they all want beer; only when the first mathematician answers
“I do not know” can the second mathematician truthfully answer “yes”. The
form of reasoning the second mathematician performs is epistemic, and his
underlying knowledge can be expressed as

Beer(M2).
KM1,w(Beer(M1)).

Beer(M1)⇔ KM1(Beer(M1)).

where KM1,w and KM1 are epistemic operators that refer to the knowledge of
the first mathematician1. The first mathematician’s answer can be formalized as
KM1,w(Beer(M1) ∧Beer(M2)). With this additional knowledge, the second
mathematician can deduce Beer(M1) ∧Beer(M2).

It is only natural that different types of knowledge are reflected in different
languages being proposed. Some of these serve to express knowledge in only a
specific domain: description logics [6] such as Unified Medical Language System
(UMLS) [15] for medical knowledge or Decision Model and Notation (DMN) [11]
for business knowledge, and temporal logics such as Computational Tree Logic
(CTL) [30] or Linear Temporal Logic (LTL) [118] are some prime examples.

1The operator KM1 is to be read as “M1 knows that [...]”, while the operator KM1,w

expresses “M1 knows whether [...]”.

OVERVIEW 3

Other languages try to remain general purpose so that a vast range of problem
domains can be expressed. Nevertheless, even these languages come in many
variations. Some build upon the concept of constraints such as alldifferent, e.g.
MiniZinc [112], others base themselves on logic. Examples of the latter include
ASP-Core-2 [25], the communal language for Answer Set Programming (ASP),
based on Horn clauses and rules, and FO(·) [36] which is based on First-Order
(FO) logic.

Another explanation for the variety in modeling languages is the intended
computational expressivity of the language. The FO(·) language, for example,
extends traditional first-order logic with (amongst others) types, aggregates
and inductive definitions. While the addition of types is purely syntactical and,
from a theoretical view at least, does not raise expressive power, it is known
that inductive definitions expand on the expressive power of first-order logic.
Another example can be found in the dialects of ASP-Core-2, some of which
include the more expressive disjunctive heads [33] while others do not.

While these languages are very high in expressive power, other languages
purposefully limit their expressive power to ensure certain tractability results,
e.g., the S-FEEL DMN language [109].

The design of modeling languages is thus often seen as a balancing act between
generic and domain-specific knowledge, expressive power and tractability. As a
consequence, highly expressive languages such as second-order or higher-order
logic are often considered too expressive.

1.1.2 Inferences

Verifying whether a certain matching in a scheduling problem satisfies all
constraints was previously introduced as the model checking inference. Model
checking is far from the only form of inference.

For example, given an incomplete matching, we might want to complete this
matching into one that satisfies all constraints. This task is called the model
expansion [107] inference. When we additionally require that e.g., the number of
students in each class is as close to a certain number as possible, we have turned
the problem into a task implemented by the model optimization inference [60,
124]. When a certain matching does not satisfy the rules, we can ask ourselves
which constraints are in fact unsatisfied, leading to an inference task called
unsat core extraction [103]. If instead we want to reduce the size of the matching
to a maximally imprecise matching that is unsatisfiable, we are looking at the
unsat structure [137] inference. Finally, if we want to compute from a matching

4 INTRODUCTION

how many hours every teacher teaches in a week, we will use the querying [139]
inference.

Other inferences include abduction [19, 85] (finding the best explanation),
deduction [75] (deriving necessary truths), default reasoning [120, 50, 51]
(reasoning with assumptions), and propagation [142] (deriving necessary truths).

The inferences listed above are generic inference tasks, however, some
applications built with KRR systems require problem-specific inferences, either
entirely new inferences (for example, progression [100, 18], which computes the
result of actions on a state-of-affairs), or specific variations of the inferences
listed above, e.g., unsat core extraction with preferences for certain rules.

1.1.3 Systems

The variety of modeling languages and inferences have led to the development
of many different systems that can automatically and efficiently perform these
inferences on specifications in these languages. Some systems accept multiple
languages, others are built in support of a single language.

Furthermore, while some of these systems are also tailored towards a specific
inference, e.g., theorem provers and deduction, database systems and querying,
the Knowledge Base System (KBS) paradigm takes the complete opposite view
and tries to support a wide range of inferences so that a single specification can
be the subject of many different reasoning tasks.

This paradigm, implemented by the IDP system [36], can automate the earlier
described tasks for our scheduling problem without burdening us with expressing
the same knowledge in many different specifications. To control these many
reasoning tasks, the IDP system integrates a LUA-based procedural language.
This procedural control language not only allows us to perform specific inferences,
but also to store and even manipulate its results, and to tie multiple subsequent
inferences together in a procedural style, if necessary.

1.2 Contributions

As mentioned above, an important factor in KR languages and KR language
design is expressivity. A more expressive language often allows for shorter
specifications, which tend to be more readable and, as a result, easier to
maintain. On the other hand, some knowledge simply cannot be expressed at
all in certain specification languages, e.g., the transitive closure in traditional

CONTRIBUTIONS 5

first-order logic. Here, we encounter a trade-off between expressivity on the
one hand, and the feasibility of a solver efficiently performing inferences on
our specification on the other hand. In general second-order and higher-order
features are considered by many as too expressive, because they allow expression
of knowledge for which too many inferences are intractable.

An important aspect to note is that in fact we are dealing with two kinds of
expressivity: computational expressivity and practical expressivity. While the
first focusses on the knowledge that is expressible in a certain language, the
second focusses on the ease with which the knowledge can be modeled. Both
kinds of expressivity are important, e.g., language extensions can be useful
due to the impact they have on computational expressivity as well as their
impact on practical expressivity. Consider, for example, a language based on
logic without support for functions; while these can be modeled by predicates
without loss in computational expressivity, their absence greatly impacts the
practical expressivity [53].

As we noted earlier, second-order and higher-order features are often considered
as too expressive, computationally. However, we take a stance that while many
problems are, from a theoretically point of view, too complex for inferences
to be feasible for solvers, many interesting instances of these problems indeed
are small enough to be expressible. Furthermore, problems that were already
expressible, can be written more succinctly and readable while at the same time
better capturing the knowledge underlying the problem, leading to benefits in
development, maintenance as well as performance due to the additional available
knowledge. Consider, as an example, scheduling golfers in the Social Golfer
Problem [72]. Here, one is asked to divide a group golfers in equally sized,
disjoint subgroups (i.e., a partition) in w different ways such that no two golfers
are ever grouped together twice or more. The partitions usually correspond to
different ‘weeks’ of a tournament. Traditional first-order modelings introduce
identifiers for each partition, leading to symmetries not present in the original
problem, which higher-order modelings can prevent using sets of partitions [56].

Therefore, this thesis contributes to the investigation of second-order and higher-
order features: their inherent prevalence in certain problems, the techniques or
strategies used to encode them partially, the implementation of second-order
features in a grounder, and how a language with second-order features can be
used to also further advance the practical expressivity of languages through
forms of templating.

The structure of the thesis is visualized in Figure 1.1 through its chapters and
their dependencies. Specifically, the content of each chapter is as follows:

6 INTRODUCTION

Chapter 3:
Analysis of Graph Mining

Chapter 4:
Second-Order Language proposal

+ Grounder

Chapter 5:
Higher-Order for Abstraction

Templates Formalized

Chapter 6:
Second-Order pattern

Chapter 7:
Overview of Problems with Second-Order Constraints

ins
pir
ed

by

bu
ild
s o
n

alternative

view
of

inspired
by

ill
us
tr
at
io
n
of

Figure 1.1: Structure of the text.

• Chapter 2 introduces general and well-established concepts that are
considered relevant for the remainder of this thesis.

• Chapter 3 introduces the graph mining problem and analyses it from a
Knowledge Representation perspective, focusing on its second-order and
higher-order aspects. The graph mining problem is a specific variant of
frequent pattern mining where patterns correspond to a graph, i.e., objects
with a more complex structure than single items or sets of items. The study
indicates that the complex nature of graphs complicates certain concepts
essential to pattern mining problems, such as the generation of candidate
patterns, the matching of candidates in (positive or negative) examples,
and canonicity of patterns. It concludes that the graph mining problem,
and others like it, can benefit greatly from a more expressive language,

CONTRIBUTIONS 7

both computationally, by allowing constraints that require solvers for
the second level of the Polynomial Hierarchy, as well as practically, by
allowing more succinct specification using a “Do not Repeat Yourself”
(DRY) approach based on templates. Lastly, it postulates that the added
computational expressivity, which allows more intractable problems, can
even be of benefit to the solving performance, setting up an ad-hoc
experiment to test the hypothesis.
The chapter is a reworked version of the following publication: van der
Hallen, M., Paramonov, S., Janssens, G., and Denecker, M. “Knowledge
Representation Analysis of Graph Mining”, Annals of Mathematics and
Artificial Intelligence 86, 1-3 (2019), pp. 21 – 60. [134].

• Chapter 4 introduces a typed second-order language and discusses
SOGrounder, a system that can ground specifications written in this
language. Firstly, the chapter proposes our typed Second-Order (SO)
language as a modeling language and shows how to model the Strategic
Companies problem, a problem at the second level of the Polynomial
Hierarchy (PH). Subsequently, the chapter details the implementation
of the grounding procedure. The target of the grounding is Quantified
Boolean Formulas (QBF) and the system can ground to QDimacs, a
Conjunctive Normal Form-based representation, as well as to QCIR, which
uses a circuit-based representation for formulas, the two most commonly
accepted input formats for QBF solvers. Lastly, the chapter sets up
an experiment comparing the performance of grounding and solving the
Strategic Companies problem, with an ASP system (Clingo [59]) on the
one hand and SOGrounder with two different QBF solvers on the other
(The QDimacs-based depQBF and the QCIR-based GhostQ.).
The chapter is a reworked version of the publication: van der Hallen,
M. and Janssens, G. “SOGrounder; Modelling and Solving Second-Order
Logic” in the Proceedings of the sixteenth international conference on
Principles of Knowledge Representation and Reasoning, 2018, pp. 72 –
77. [133]

• Chapter 5 discusses the concept of templates from a theoretical, semantic
point of view. Templates are linked to second-order inductive definitions.
As a result of this link, templates, previously known in, e.g., ASP as a
purely syntactical constructs with an associated rewriting procedure, are
given a proper semantic meaning by extending the satisfaction relation.
The chapter is a summary of the publication: Dasseville, I., van der
Hallen, M., Janssens, G. and Denecker, M. “Semantics of Templates in a
Compositional Framework for Building Logics” in Theory and Practice
of Logic Programming, 15, 4-5 (2015), pp. 681 – 695 [35], of which I am

8 INTRODUCTION

a co-author, and is added to provide a background into the theoretical
foundations of templates.

• Chapter 6 introduces a commonly encountered pattern in Second-Order
specifications. It introduces the concepts of parametrized theories and
variant world quantifiers as a way of expressing this pattern. These
concepts effectively introduce an alternative form of templates, and allow
us to express many inferences in the specification language itself, opening
up possibilities of continued reasoning on inference results, as opposed to
using procedural control.
The chapter represents new, unpublished work.

• Chapter 7 presents a select overview of interesting problems that feature
second-order logic aspects. As such, it serves as an inspiration and
motivation for the development of a specification language covering second-
order logic, but also as an illustration of the parametrized theories and
variant world quantifiers introduced in Chapter 6.

Chapter 2

Preliminaries

In this section, we introduce some general and well-established concepts that
make an appearance throughout the main text. Specifically, we introduce the
syntax and semantics of first-order logic and discuss the expressivity of logics
through descriptive complexity.

2.1 First-Order Logic: Syntax and Semantics

2.1.1 Syntax

Definition 1 (Vocabulary). A vocabulary V consists of an infinite supply of
variable symbols and a finite set of predicate symbols P/n and function symbols
f/n, where n ≥ 0 and n is known as the arity of the symbol. Predicates and
functions of arity 0 are called propositions and constants, respectively.

Alternatively, the vocabulary is also referred to as a signature, leading to the
use of the symbol Σ. Without loss of generality, we can refer to a predicate
symbol P/n ∈ V as simply P , specifically when the arity is either irrelevant or
clear from context.

Definition 2 (Term). A term t is either a variable x ∈ V or a function
symbol f/n ∈ V applied to n terms t1 . . . tn, written as f(t1, . . . , tn).1

1For constants f/0, we usally allow the shorthand f .

9

10 PRELIMINARIES

Definition 3 (Atom). An atom is a predicate P/n ∈ V applied to n terms
t1, . . . , tn, written as P (t1, . . . , tn).2

Definition 4 (Formula). Formulas φ over vocabulary V are defined
inductively:

• All atoms are formulas .
• if φ is a formula, then its negation ¬φ is a formula.
• If φ and ψ are formulas, then φ ∧ ψ, φ ∨ ψ, φ ⇒ ψ, and φ ⇔ ψ are

formulas.
• If φ is a formula and x a variable ∈ V , then ∀x : φ and ∃x : φ are

formulas. We say the variable x is bounded within φ by the quantifier ∀
or ∃.

• If t1 and t2 are terms, then t1 = t2 and t1 < t2 are formula.

Any occurrence of a symbol s that is not bounded by a quantifier is called free.
The free symbols of a formula φ, denoted by free(φ) are any symbols that have
a free occurence in φ.

2.1.2 Semantics

The semantics of first-order logic are most commonly defined through model
theory. First, we have to define the concept of a structure or interpretation over
vocabulary V . Structures formalize the notion of a “possible world”, sometimes
also referred to as a “state-of-affairs”.
Definition 5 (Structures). A structure I over vocabulary V consists of a
non-empty domain D (referred to as dom(I)), an assignment of an n-ary
relation over the domain for every predicate symbol P/n ∈ V , an assignment of
a total n-ary function over the domain for every function symbol f/n ∈ V , and
an assignment of a domain element to every variable symbol.

In this thesis, we will restrict ourselves to structures with a finite domain.
Furthermore, structures are sometimes referred to as interpretations.

A domain D consists of domain elements d, and we assume an ordering exists
on these domain elements. A predicate symbol P/n ∈ V applied to an n-ary
tuple of domain elements (d1, . . . , dn) (abbreviated to d) is commonly called a
domain atom of I.

The assignment of relations and functions over the domain by a structure I to
predicates P , respectively functions f , is called the valuation function of I, and
the value assigned to P (f) by this valuation function is written as P I (fI).

2For propositions P/0, we usually allow the shorthand P .

FIRST-ORDER LOGIC: SYNTAX AND SEMANTICS 11

Given a structure I, we can extend or modify its valuation function by writing
I[x : v], meaning the variable or symbol x is assigned the value v, where v,
depending on x is either a domain element of, a relation over or a function
over the domain dom(I). Multiple modifications can be separated by commas,
and are handled left-to-right, i.e., I[x : v, y : v′, x : v′] assigns both x and y the
value v′ in I.

With minor abuse of notation, we write I[P (d) : t] and I[P (d) : f] to mean the
relation assigned to P by I is modified to include (respectively exclude) the
tuple d of domain elements.

Given a structure I over vocabulary V and a vocabulary V ′ ⊆ V , we can project
I to V ′, writing I|V ′ . Informally, this restricts the valuation function of I to
symbols in V ′. Conversely, for vocabularies V and V ′ ⊆ V , we say a structure
I over V extends a structure I ′ over V ′ iff I|V ′ = I ′.

Projecting structures onto vocabularies allows us to compare two structures
I and I ′ over different vocabularies V and V ′ on a common sub-vocabulary
Vc (i.e., Vc ⊆ V and Vc ⊆ V ′). Specifically, we say the structures I and I ′ are
vocabulary-equivalent on Vc, written as I =Vc

I ′ iff I|Vc
= I ′|Vc

.

The valuation function (·)I is extended for terms t as follows:

• If t is a variable x, then tI = xI ,
• If t is a function symbol f/n applied to n terms t1, . . . , tn then tI =
fI(tI1 , . . . , tIn).

We also introduce the shorthand (t1, . . . , tn)I for tuples (sometimes written as
t
I) to mean (t1I , . . . , tnI).

To define the semantics of formulas, we introduce the satisfaction relation |=
between structures I and formulas φ, usually written in infix notation as I |= φ.
Definition 6. Given a formula φ and a structure I that assigns a value to all
free symbols of φ, we define the satisfaction relation inductively based on the
syntactical structure of φ:

• I |= P (t1, . . . , tn) where P is an n-ary predicate symbol iff (tI1 , . . . , tIn) ∈
P I . 3

• I |= ¬φ iff I 6|= φ.
• I |= φ ∧ ψ iff I |= φ and I |= ψ.
• I |= φ ∨ ψ iff I |= φ or I |= ψ (possibly both).
• I |= ∃x : φ iff there is a d ∈ dom(I) s.t. I[x : d] |= φ.
• I |= t1 = t2 iff t1

I = t2
I .

• I |= t1 < t2 iff t1
I < t2

I .
3Note that for propositions P/0, we say I |= P iff the empty tuple () ∈ PI .

12 PRELIMINARIES

Value of p
t f u

Fo
rm

ul
a ¬p f t u

p ∧ q q f u
p ∨ q t q q

Table 2.1: Kleene’s truth table.

Formulas of the form φ ⇔ ψ, φ ⇒ ψ, ∀x : φ are defined through their usual
equivalences (¬φ ∧ ¬ψ) ∨ (φ ∧ ψ), ¬φ ∨ ψ and ¬∃x : ¬φ.

We say a structure I satisfies φ iff I |= φ. Structures that satisfy φ are called
models of φ.4

Three-valued semantics Sometimes, the semantics of first-order logic is
extended to a three-valued semantics, specifically to define rule logics. In
three-valued semantics, the concept of a partial structure is introduced. The
valuation function associated with a partial structure assigns predicate symbols
P/n a function from n-ary tuples of the domain to the set {t, f ,u} where u is
the truth value unknown. Function symbols f/n are assigned a function from
n-ary tuples of the domain to a set of domain elements; this set represents the
possible values that the function can take for the given arguments.

Three-valued truth values admit two partial orderings, the truth order ≤t in
which f <t u <t t and the precision order ≤p where u <p f and u <p t. These
orderings can be extended pointwise to structures. We say a partial structure is
exact if P I maps into {t, f} for every P and fI maps to a singleton for every f .

The most straightforward way to define three-valued semantics is to extend the
valuation function to assign formulas a three-valued truth value t, f ,u based
on Kleene’s truth tables (See Table 2.1) and define the satisfaction relation of
partial structures as I |= φ iff φI = t.

Arithmetic Standard First-Order logic does not support arithmetic. However,
support for arithmetic can be added. To do so, one must introduce the
necessary (sometimes partial) functions for the common operations +,−, ∗, /
in the vocabulary and include the integers in the domain dom(I) of every
structure I, as well as constants for every integer. Furthermore, one should

4Alternative definitions sometimes extend the valuation function to formulas, assigning
formulas either the value t or f , reducing the satisfaction relation to simply I |= φ iff φI = t.

EXPRESSIVITY OF LOGICS 13

fix the interpretation for the (partial) arithmetic functions to their standard
interpretation.

2.2 Expressivity of Logics

There is a long history of characterizing complexity classes by the logics (over
finite structures) that can express the languages within each class, starting from
the first result in Descriptive Complexity by Fagin [52] that the complexity
class NP is captured by existential second-order logic, i.e., a set of existential
second-order quantifications followed by a first-order formula.

Definition 7 (Capturing). A logic L captures a complexity class C if for
every problem P , P is in C if and only if there exists a formula φ over a
vocabulary V in L such that every input string of P corresponds to a finite
structure I over V and P = {I | I |= φ}.

Continuing on this work, Immerman [78] showed second-order logic, with an
arbitrary number of alternations, captures the Polynomial Hierarchy (PH) [129].
Specifically, the polynomial hierarchy PH is defined inductively as follows:

Definition 8 (Polynomial Hierarchy PH [129]). The polynomial hierarchy
is the union

∞⋃
k=0

ΣPk =
∞⋃
k=0

∆P
k =

∞⋃
k=0

ΠP
k where

• for k = 0, the ∆P
0 = ΣP0 = ΠP

0 = P ,

• for k>0, the classes ∆P
k = PΣP

k−1 , ΣPk = NPΣP
k−1 , ΠP

k = coNPΣP
k−1 .

For Turing machines, ΣPk corresponds to the problems verifiable in a polynomial
number of steps given an oracle solving ΣPk−1 problems in a single step.

The definition of the Polynomial Hierarchy also defines an infinite number of
classes that, if the Polynomial Hierarchy does not collapse [129], each correspond
to a different level of complexity. This gives rise to problem families such as
k-QBF family, a variant of the regular QBF problem where the number of
quantifier alternations is limited to k − 1. If we fix the outermost quantifier
to be existential, deciding satisfiability over such formulas is ΣP

k -complete; if
instead the outermost quantifier is fixed to be universal deciding satisfiability is
ΠP
k -complete.

Chapter 3

Analysis of Graph Mining

This chapter is a reworked version of a publication in “Annals of Mathematics
and Artificial Intelligence” [134]. The work was also presented at the Ninth
International Workshop on Answer Set Programming and Other Computing
Paradigms – October 16th, 2016, New York City, USA [135]. Modifications
have been made to the introduction and the conclusion. Furthermore, some
small modifications in presentation were made and errors were corrected.

Personal contribution: 90%.

3.1 Introduction

This chapter is a case study of the graph mining problem, a type of ‘frequent
pattern mining’ task, from a Knowledge Representation point-of-view. From
this case study, we studied if and how declarative languages and their solvers
support higher-order logics.

In general, the graph mining task involves finding a graph that occurs frequently
in a network or a in a database of graphs [49]. We discuss the latter, i.e.,
finding frequent occurrences in a dataset of graphs, a setting generally referred
to as transactional as single graph in the dataset can represent a transaction
in, e.g., shopping data. This is a problem of interest in many fields, such as
bioinformatics [88], chemoinformatics [81, 82] and computer vision [86].

Graph mining exists in many variations and the knowledge behind graph mining
is easily expressible in logic. These properties make it seem like a prime

14

INTRODUCTION 15

candidate for a declarative approach as studied by Knowledge Representation,
as these adapt easily to changing requirements and variations. Specifically,
we say knowledge representation offers a natural framework for declarative
modeling satisfying ‘The Principle of Elaboration Tolerance’ [105, 65]. This
principle, in short, states that declarative specifications should be easily adapted
to new requirements or changed circumstances. Graph mining is a prototypical
example of a large family of real-world problems that can be formalized as the
combination of various smaller problems with minor adaptations.

Current state-of-the-art KR languages such as IDP and ASP aspire to be
practical solvers for such problems [23]. While these languages are elaboration
tolerant, we show that expressing the graph mining problem in these languages
requires unexpectedly complicated and unintuitive encoding techniques. These
techniques are in contrast to the ease with which one can transform the
mathematical definition of graph mining to a higher-order logic specification,
i.e., a specification that allows for both 1) quantification over predicates and
functions (covered already by second-order), and 2) higher-order predicates,
which accept other predicates and functions as arguments.

These unintuitive encoding techniques furthermore distract from the problem
essentials, complicating possible future adaptation. Thus, it is an open challenge
for KR systems to provide support for abstract, higher-order modeling while
remaining elaboration tolerant.

In this chapter, we argue that efforts should be made towards supporting higher-
order logic specifications in modern specification languages, without unintuitive
and complicated encoding techniques. We argue that this not only makes
representation clearer and more susceptible to future adaptation, but might
also allow for faster, more competitive solver techniques to be implemented.
We study the Graph Mining problem as an example of a problem that could
benefit from a higher-order specification, with the aim of gathering insight in
and deriving techniques for such problems in general. As a first step towards
this goal, we will:

• Propose a higher-order encoding of graph mining that closely follows its
mathematical model (Section 3.4).

• Explore how the current state-of-the-art KR systems model graph mining
using modeling techniques (Section 3.5).

• Propose and experiment with additional solver techniques derived from
these modeling techniques that can support higher-order encodings,
without affecting elaboration tolerance (Section 3.6).

16 ANALYSIS OF GRAPH MINING

3.2 Preliminaries

Graph mining One of the most fundamental tasks in the realm of data mining
is frequent pattern mining: the task of enumerating patterns which occur
frequently in a dataset. Graph mining is a variant of frequent pattern mining
in which the patterns take the form of (labeled) graphs. The dataset in which
patterns must occur is either a single large-scale network or a vast set of separate,
smaller graphs. The latter option is often referred to as the transactional setting.
In the context of graph mining, for a pattern to ‘occur’ in a graph G, it must
be homomorphic to a subgraph of graph G.

This work will only consider the transactional setting, as it is computationally
more feasible. The transactional setting is relevant as it can be used for
knowledge discovery from graph structured data in many domains, such as
chemoinformatics, natural language processing and bioinformatics. For example,
in bioinformatics, graph mining can be used to find molecular substructures
(such as benzene rings) that possibly predict or cause certain properties such
as lumocity or the mutagenicity of diseases such as Salmonella [82]. In natural
language processing, graph mining can identify key concepts in a transcript
from a graph representation of the natural language sentences [73].

As real-world problems are computationally challenging, numerous specialized
imperative algorithms for graph mining have been developed. These different
imperative algorithms correspond to the many variants of pattern mining tasks
described in the literature, from various types of item set mining, where data
is propositional, to tasks involving more structured data and patterns, such
as trees and graphs. Well known examples of algorithms for frequent pattern
mining in databases of graphs are gspan [144] and gaston [113].

However, the need for many different algorithms for only slightly different
variants within pattern mining tasks has motivated the exploration of more
declarative approaches. For example, it has been shown that Constraint
Programming (CP) [39] and Answer Set Programming (ASP) [83] can express
item set mining, which is a setting of frequent pattern mining where data is
propositional and can be represented in a table, while the patterns can be
described as a set of items. Their results demonstrate that such tasks can
be accomplished in a declarative way with an acceptable performance penalty.
Furthermore, different variations can be supported with only minimal changes.

When mining more complex and structured data than item sets, such as graphs
or sequences, predicate logic has been used for representation, and inductive
logic programming [110] has emerged as a way to mine such data. While we
know of no earlier declarative approaches to graph mining, recent work on
sequence mining [68] uses ASP to mine frequent sequences. Their solution

PRELIMINARIES 17

performs pattern generation, the frequency check, and uses an extension of ASP
called asprin [21] to prefer patterns that satisfy more involved properties such
as maximality (no larger patterns exist) or coverage (no other pattern occurs
in the same examples). However, because graphs are more complex structures
than sequences, extending their solution to graphs is non-trivial. In the context
of graphs, for example, checking occurrence corresponds with a homomorphism
check (beyond P), instead of a (polynomial) subset check.

Owing to its descriptive complexity, the homomorphism check could easily be
expressed using higher-order logic, but this is not supported by state-of-the-art
declarative languages such as IDP and ASP. We show that graph mining can
nevertheless be supported using various encoding techniques, making it an ideal
candidate for our case study into combining support for higher-order logic with
elaboration tolerance.

Higher-order logic As mentioned earlier, the composite nature of the graph
mining problem lends itself for a higher-order logic specification, in which 1)
quantified variables can range not only over individual elements but also over
sets (represented by predicates) and 2) predicates can accept other predicates
or functions as arguments. For example, a high-level view of the graph mining
problem consists of generating connected labeled graphs (patterns), checking
whether they occur frequently in a dataset, and filtering out patterns that are
too similar to others (e.g., isomorphic), leaving only those patterns that we
will call canonical. In this view, it makes sense to describe the mechanisms
behind checking for canonicity and occurrence separately, which, as we will
show, translates nicely to higher-order specifications.

Specification languages offer varying levels of support for higher-order logic. On
the one hand, meta-programming, as known from Logic Programming [1], has
inspired the introduction of higher-order atoms in Hex [44] and the higher-order
syntax in HiLog [27]. Predicate symbols can be either constants as in Prolog
(first-order case) or variables (second-order case). The latter range over predicate
names, and not the predicate space itself, essentially combining second-order
syntax with first-order semantics. On the other hand, formal specification
languages such as Z [20], B [2], Event-B [3] and TLA [97] extend predicate logic
with set theory and offer higher-order datastructures. ProB [98] is a constraint
solver, animator and model checker for such languages, implemented in SICStus
Prolog.

While it is possible to express the graph mining problem in such languages
directly using higher-order logic, earlier work [135] has shown that these systems
are restricted to model generation and checking (with or without imperative
interfaces), and that their performance does not rival that of systems based on

18 ANALYSIS OF GRAPH MINING

revolutionary techniques such as CDCL [128]. However, these systems using
CDCL, examples of which are the ones for the IDP [36] and the ASP [46, 58]
languages, currently do not allow higher-order syntax. Nevertheless, several
techniques exist for these languages that allow the user to simulate higher-order
logic to model problems such as graph mining. This observation leads us to
inquire whether these techniques can be generalized and be used to provide
these languages with built-in support for higher-order.

3.3 Formalization of graph mining

In this section we mathematically formalize the transactional graph mining
problem. As we will only consider the transactional setting in this work,
we will simply refer to it as ‘graph mining’. First, we define graphs, graph
homomorphism, and the concept of a pattern. We then express what it means
for a pattern to be canonical, which is needed when we want to mine more than
one pattern.

3.3.1 Patterns

We start with a comprehensive formal definition of the graph mining problem.
Throughout this chapter we will assume the existence of two finite, sufficiently
large sets: a set V consisting of vertices, and a set L of labels for those vertices.

Definition 9 (Labeled Graph). A labeled graph G is a tuple 〈N,E, l〉 where
N is a subset of the vertices V , called the nodes of the graph G, E is a binary
predicate on N that represents the set of (directed) edges and l is a unary
function from N to L.

Definition 10 (Connectedness). A graph G = 〈N,E, l〉 is connected iff for
each pair of nodes v and v′ in N , there exists an edge (v, v′) ∈ E or there
exists a sequence v, v1 . . . vn, v

′ such that there exist edges (v, v1), (vi, vi+1) and
(vn, v′) ∈ E, where 1 ≤ i ≤ n− 1.

Definition 11 (Graph Homomorphism). A (injective) graph homomor-
phism f from a labeled graph G = 〈N,E, l〉 to a labeled graph G′ = 〈N ′, E′, l′〉
is a (injective) mapping f : N → N ′ from nodes of G to nodes of G′ such that:

• ∀u, v ∈ N : (u, v) ∈ E ⇒ (f(u), f(v)) ∈ E′ (the mapping preserves edges),
and

• ∀v ∈ N : l(v) = l′(f(v)) (the mapping preserves labelings).

FORMALIZATION OF GRAPH MINING 19

If a (injective) graph homomorphism from graph G to G′ exists, we say G is
(injectively) homomorphic1 to G′.

Definition 12 (Graph Mining). Given a sufficiently large set of vertices V
and labels L, two sets of graphs over V and L, G+ and G−, referred to as the
positive respectively negative example graphs, two natural numbers N− and N+
(referred to as thresholds), and a graph T over V and L called the template, we
look for a graph P such that:

• P is a vertex-induced subgraph of T , meaning that the edges of P are
exactly those edges of T for which both endpoints are also nodes of P,

• P is connected,
• P is injectively homomorphic with at least N+ positive examples G+ ∈ G+,
• P is injectively homomorphic with at most N− negative examples G− ∈

G−.

We call the example graphs to whom P is (injectively) homomorphic the positive
(negative) homomorphisms, and the restriction on their number the positive
(negative) homomorphic property, respectively.

Note that we choose injective homomorphisms as the matching operator in this
definition, and include the concept of a template graph to guide the search as well
as to limit the search space. These choices are inspired by their appropriateness
for many use cases in the realm of bioinformatics, chemoinformatics and social
networks. However, both of these choices can be changed effortlessly, in the
mathematical definition as well as in any specifications of the problem: we
can easily drop the injectivity constraint in any logic specification, and can
choose the fully connected graph as template without loss of generality. For
the remainder of this chapter, we will use ‘homomorphic’ to mean ‘injectively
homomorph’ unless specifically stated otherwise.

(a) Positive Example (b) Negative Example (c) Template Graph

Figure 3.1: A graph mining instance (N+ = 1, N− = 0) with pattern
candidates. Node labels are differentiated by the shape of their indicator

(circle, diamond).

1Note that within the data mining community, injectively homomorphic is also commonly
known as subgraph isomorphic.

20 ANALYSIS OF GRAPH MINING

(a) Candidate a (b) Candidate b

Figure 3.2: Pattern candidates for the graph mining instance shown in
Figure 3.1.

Figure 3.3: A mapping of candidate 3.2b to the negative example 3.1b.

As an example of a graph mining problem instance, take the problem set shown
in Figure 3.1. Node labels are differentiated by the shape of their indicator:
circle or diamond. All nodes have the same (circle) label, except for the
rightmost node in the negative example 3.1b. Furthermore, when interpreting
these graphs, all (visualized) edges are bidirectional. The angles and lengths of
edges are irrelevant, only the connections are relevant. We take the positive
and negative thresholds to be N+ = 1, N− = 0, meaning we require at least
one homomorphism with a positive example and allow no homomorphisms
with negative examples. There is one positive example (Figure 3.1a), and one
negative example (Figure 3.1b), while Figure 3.1c shows the template graph.

Figures 3.2a–3.2b show a pattern and a non-pattern graph respectively: They
are both connected subgraphs of the template. However, because we require at
least one homomorphism with a positive example, and allow no homomorphisms
with negative examples (i.e., problem parameters N+ = 1 and N− = 0),
Figure 3.2a represents a pattern. It is clear that there exists a mapping from
each node of the valid pattern to a node of the positive example, while no
such mapping exists for the negative example. Looking at Figure 3.2b, this
graph is clearly homomorphic with both the positive as well as the negative
example: A possible mapping from 3.2b to the negative example 3.1b is shown
in Figure 3.3. Therefore, 3.2b is a non-pattern graph.

3.3.2 Canonical patterns

To extend on the graph mining task described above, we can look for multiple
patterns, instead of just one. In this case, we can impose restrictions on the

A HIGHER-ORDER SPECIFICATION OF GRAPH MINING 21

different patterns that are found. For example, it stands to reason that one wants
only canonical solutions, meaning that no two patterns found are isomorphic.

Definition 13 (Graph Isomorphism). A graph isomorphism f between two
labeled graphs G = 〈N,E, l〉 and G′ = 〈N ′, E′, l′〉 is a one-to-one mapping
N → N ′ such that f represents an injective homomorphism from G to G′, and
its inverse f−1 represents an injective homomorphism from G′ to G. If there
exist graph isomorphisms between G and G′ we say G and G′ are isomorphic.

(a) First candidate pattern (b) Second candidate pattern

Figure 3.4: Possible patterns.

Given the graph mining problem instance specified in Figure 3.1, we have
already established that Figure 3.4a is a pattern. When we try to mine a
second pattern, we might suggest a pattern as shown in Figure 3.4b. A quick
check, however, will show that there is a one-to-one mapping f such that both f
as well as its inverse f−1 preserve edges. As a result, both patterns candidates
are isomorphic, and thus only one should be accepted as a pattern.

Definition 14 (Canonical Patterns). A set of canonical patterns is a set P
of patterns P1, ...,Pn, such that for each pair of different elements (of P) Pi,Pj
holds that there does not exist an isomorphism between Pi and Pj.

When we mine multiple patterns, we will pose the additional requirement that
the mined patterns must be canonical. Of course, with the above definition of
canonicity, many solutions will exist: any pattern can be interchanged for any
of its isomorphic counterparts to generate a new solution. If this is unwanted,
this can be prevented by introducing an ordering on the isomorphic patterns,
and requiring that each pattern in the solution is the minimal pattern among
its isomorphic counterparts.

3.4 A higher-order specification of Graph Mining

In this section, we explore how the mathematical formalization of the graph
mining problem can be translated towards a higher-order specification. In
the first section, we will discuss how graphs introduce higher-order objects
when modeled closely to the mathematical definition. Next, we will discuss a

22 ANALYSIS OF GRAPH MINING

higher-order specification of the complete graph mining problem. We conclude
by identifying a set of desired properties for graph mining specifications and
their solvers, which the proposed higher-order specification satisfies.

3.4.1 Representation of graphs

Graphs are the main concept in the graph mining problem, and, when
represented using tuples 〈N,E, l〉, they take the form of composite objects:
these graphs are a collection of first-order objects, namely two predicates and a
function. Therefore, a set of graphs is equivalent to a set of tuples: the most
straightforward representation of such a set would be a ternary predicate, with
the node and edge predicate and the labeling function as arguments:
Patterns = {({1,2,3}, {(1,2),(2,3),(3,1)}, {(17→a), (27→b), (37→a)}),

({1,2,3}, {(1,3),(3,2)}, {(17→b), (27→b), (37→c)})}.

It is very natural to consider and represent each graph as a coherent grouping
of its own components: all characteristics (edges, labeling . . .) of a graph are
represented by separate entities or concepts, which are grouped together for each
graph G in the tuple that describes G. We refer to this as the local coherence of
the graph representation.

Alternative representations could, for example, introduce an edge predicate for
each graph separately (e.g., called edge_g1/22, edge_g2/2), or, as we will be
forced to do later on, they could introduce an edge predicate for all graphs at
once. This obscures the relationship between the different characteristics of the
same graph:

• In the first alternative this relationship is only present in the name of
each predicate (which prohibits us to reason about it in a general way).
Furthermore, without any additional constraints, it is possible to specify
a graph only partially, e.g., only provide an edge relationship.

• In the second alternative the relationship can be expressed using an
identifier. However, in contrast to the higher-order tupling approach, it is
still possible to specify a graph only partially.

Representing graphs instead as a tuple of their components is not only a
very natural choice, it also very explicitly shows that all example graphs are
independent, and that the searches for homomorphisms between a pattern and

2We use predicate_name/n to mean the predicate with name predicate_name and
arity n.

A HIGHER-ORDER SPECIFICATION OF GRAPH MINING 23

example graphs are independent too. This motivates us to reason about graphs
as locally coherent objects in our logical models as well. The next section
explores a higher-order specification that achieves this goal.

3.4.2 A higher-order specification

In Listing 3.1, we propose a specification for the graph mining problem, using
features such as higher-order logic and inductive definitions. Regarding syntax
and style, we devise a syntax for illustration purposes inspired by IDP [36],
which closely corresponds to FO logic with ← for inductive definitions, as
opposed to ⇒ for classical implication, and [type] for type annotations. We
identify four major syntactical additions w.r.t. regular IDP syntax:

• We introduce the keyword so-type. The so-type keyword can be used to
define a second-order type. As such, the type does not represent a set of
domain elements, but instead represents a set of (tuples of) predicates
or functions. These predicates and functions themselves must be typed
using first-order types.

• When presented with an object of a second-order type consisting of a
tuple, one will often want to access one specific part of the tuple. To this
end, the different parts of a tuple are named. These names provide a
way to project a second-order object to one of its parts using .-syntax
familiar from object-oriented programming. For example, if a tuple result
representing test scores contains two elements, the name and score, then
result.score accesses the score.

• We introduce the possibility to quantify over predicates or functions,
using the special quantifiers ∀SO and ∃SO. These quantifications must
be typed: ∃SO F [I:O] means that there exists a function F which takes
elements of type I as input and returns elements of O as output. Likewise,
∃SO P [I,O] means that there exists a predicate P, taking elements from
I and O as its first and second argument, respectively.

• We allow higher-order predicates with arguments of a second-order type.
These predicates can be defined using an inductive definition. These are
predicates that take (tuples of) predicates and functions as an argument.
The semantics of these higher-order inductive definitions will be defined
Chapter 5, where they are called template definitions. For an example,
we refer to Lines 38–48 of Listing 3.1, where the predicate is_pattern/1,
which takes a second-order argument graph as an argument, is defined
using an inductive definition.

24 ANALYSIS OF GRAPH MINING

As with IDP, we first define a vocabulary V, and define a theory T over this
vocabulary V. Then, when presented with a specific graph mining instance, we
can encode this into a structure S and perform the model expansion inference
to find a solution. We will further explore the contents of these three language
blocks in the sections below.

Vocabulary

As mentioned above, the first thing we define is the vocabulary V. First, we
introduce the types vertex and label to represent the set of vertices V and
set of labels L from the mathematical formalization. Next, we define the
second-order type graph, which is declared as a tuple of a predicate node/1,
a predicate edge/2, and a partial function labeling. These predicates and
functions represent the exact subset of vertices which are the nodes, the edges
between these nodes and the labeling of these nodes. As such, we have defined
all the necessary types for the graph mining problem.

Now, we introduce the necessary predicates symbols: We define the higher-order
predicates homomorph/2 and isomorph/2, which are binary relations between
graphs. Next, we define some simple sets of graphs as unary higher-order
predicates over graphs: the positive example set positive/1 and its negative
counterpart negative/1, the set of canonical patterns canonical_pattern/1,
and the set of patterns is_pattern/1. Finally, we define:

• a ternary predicate connected/3, which should be true if the two nodes
represented by the first two arguments are in fact connected in the graph
given as a third argument,

• a higher-order function template to refer to the chosen template graph,
and

• the two thresholds from the problem statement in Definition 12, N−
and N+ as integers.

Theory

In the theory, we define a number of the higher-order predicates using the
concept of template definitions, as described by Dasseville et al. [35]. Whenever a
defined predicate accepts a second-order type as argument, it can be decomposed
using matching (e.g., Line 20). Quantification over second-order objects uses
annotated quantifiers (∃SO and ∀SO) and must be typed (any unary predicate
symbol can be used as a type), e.g., Line 21. We will adhere to the convention

A HIGHER-ORDER SPECIFICATION OF GRAPH MINING 25

that variables referring to higher-order objects are upper case, whereas variables
referring to first-order objects are lower case.

First, we define the concepts of homomorph/2 and isomorph/2: We express the
constraint that two graphs are only homomorphic if it is possible to find a
function F from nodes of the first graph to nodes of the second graph, as can
be derived from the existential second-order quantification ∃SO in combination
with the typing statement [N1:N2] (Line 21). In line with Definition 11, we
first express that this function must be injective (Line 21). Next, we specify
that it must preserve edges (Line 22), and we conclude by specifying that
it must preserve labels as well (Line 23). For the definition of isomorph/2,
we follow the mathematical definition in the same way, except for the usage
of f−1: instead, we specifically state that the function F must be bijective
(Line 27 and 28), and use that to express that F−1 must preserve edges as well
(Line 30).

Next, we define the concept of connectedness in a given graph: This can
be defined rather straightforwardly using an inductive definition by noting
that either the two nodes are connected directly, or there exists a third node
connected with both argument nodes.

We continue by defining the concept of a pattern, following the requirements of
Definition 12:

• A pattern is a vertex-induced subgraph of the template (using dot notation
to access the separate components of a variable of second-order type,
Line 41).

• A pattern must be connected.

• If we count the number of graphs from the positive (resp. negative) example
set such that the proposed pattern graph is homomorphic with the chosen
graph, the result should exceed (resp. should not exceed) the positive (resp.
negative) threshold, as evidenced by the count aggregates (Line 43–44).

Furthermore, we include two constraints to enforce that all three components
of a pattern graph are consistent, i.e. that edges only occur between nodes of
the graph (Line 45) and that the labeling labels exactly the nodes of the graph
(Line 46).

Lastly, we provide two constraints saying that for a graph P to be a canonical
pattern, it must be a pattern, and no other canonical pattern P2 can be
isomorphic to it.

26 ANALYSIS OF GRAPH MINING

Listing 3.1: Higher-order encoding for the general graph mining problem.
1 vocabulary V {
2 type vertex
3 type label
4 so-type graph of (node(vertex), edge(vertex,vertex), partial labeling(vertex):label)

6 homomorph(graph, graph)
7 isomorph(graph, graph)
8 positive(graph) // a set of positive graphs
9 negative(graph)

10 canonical_pattern(graph)
11 is_pattern(graph)
12 connected(vertex,vertex, graph)
13 template:graph // a given template
14 N−: int
15 N+: int
16 }

18 theory T {
19 {
20 homomorph((N1, E1, L1), (N2, E2, L2)) ←
21

(
∃SO F [N1:N2]: (∀ x [N1] y [N1]: x 6= y ⇒ F(x) 6= F(y)) ∧

22 (∀ x [N1] y [N1]: E1(x, y) ⇒ E2(F(x), F(y))) ∧
23 (∀ x [N1]: L1(x) = L2(F(x)))

)
.

24 }
25 {
26 isomorph((N1, E1, L1),(N2, E2, L2)) ←
27

(
∃SO F [N1:N2]: (∀ y [N2]: ∃ x [N1]: F(x)=y) ∧

28 (∀ x [N1] y [N1]: x 6= y ⇒ F(x) 6= F(y)) ∧
29 (∀ x [N1] y [N1]: E1(x, y) ⇒ E2(F(x), F(y))) ∧
30 (∀ x [N2] y [N2]: E2(x, y) ⇒ ∃ fx [N1] fy [N1]: E1(fx, fy) ∧ x = F(fx) ∧ y = F(

fy))∧
31 (∀ x [N1]: L1(x) = L2(F(x)))

)
.

32 }
33 {
34 connected(x, y, (N, E, L)) ← E(x, y) ∨ E(y, x).
35 connected(x, y, (N, E, L)) ← ∃ z [N]: connected(x, z, (N, E, L)) ∧ connected(z, y, (N,

 E, L)).
36 }
37 {
38 is_pattern((N, E, L)) ←
39

(
40 (∀ x [N]: (template.node(x) ∧ ∀ y [N] : (E(x,y) ⇔ template.edge(x,y))
41 ∧ (L(x) = template.labeling(x)))) ∧
42 (∀ x [N] y [N]: x 6= y ⇒ connected(x, y, (N,E,L)))∧
43 (#{ Pos : positive(Pos) ∧ homomorph((N,E,L), Pos) }≥ N+) ∧
44 (#{ Neg : negative(Neg) ∧ homomorph((N,E,L), Neg) }≤ N−) ∧
45 (∀ x [vertex] y [Vertex] : E(x,y) ⇒ N(x) ∧ N(y)) ∧
46 (∀ x [vertex] : (∃ l [label] : L(x)=y) ⇔ N(x))
47

)
.

48 }
49 ∀P [graph] : canonical_pattern(P) ⇒ is_pattern(P).
50 ∀P [graph] P2 [graph] : canonical_pattern(P)∧canonical_pattern(P2)∧P6=P2 ⇒ ¬isomorph(P,

 P2).
51 }

A HIGHER-ORDER SPECIFICATION OF GRAPH MINING 27

This encoding compactly specifies the graph mining problem, in a way that
closely corresponds to its mathematical definition, providing several general
graph properties as templates.

3.4.3 Desired properties of graph mining specifications

Using the graph mining problem as a case study, we derived a set of desirable
properties that a good KR specification and its associated solver should satisfy.
First, we discuss properties of the KR specification itself:

1. Labeled graphs are the main concept in the mathematical definition of
the graph mining problem. In this definition, labeled graphs are seen as a
mathematical object consisting of a vertex relation, an edge relation and
a labeling function. Thus, a good KR specification should treat labeled
graphs as (higher-order) objects.
It is clear from the second-order type graph in Listing 3.1 that this
higher-order specification satisfies this property.

2. All example graphs are independent, so the search for a homomorphism
between a pattern and a given example graph can be performed
independently. A good KR specification should allow one to write the
necessary quantifications locally, i.e., within a formula, as opposed to
quantifying globally using the vocabulary. This is more natural, and has
the added benefit of keeping the scope of these quantifications as small as
possible and making the independence evident.
The universal quantification over example graphs hidden in the count
aggregates of Line 43 in Listing 3.1, combined with the existential
quantification of F on Line 21, clearly identifies the independence:
for every single example graph, a separate function F proving the
homomorphism can be chosen.

3. The definition of a homomorphism between pattern and example graph is
always the same, regardless of the sign of the example graph (negative
or positive). The only difference is the at most/at least constraint on
the number of homomorphisms. A good KR specification preserves the
similarity of these constraints.
The great similarity between Lines 43 and 44 shows that our proposed
higher-order specification satisfies this property.

4. We want to be able to find multiple, non-isomorphic, patterns.

28 ANALYSIS OF GRAPH MINING

The definition of canonical_pattern/1, and the definition of is_pattern
/1 as a set of pattern graphs allows us to express the problem independent
of the number of patterns we want to mine.

5. We want to express constraints such as connectedness of the different
nodes in the pattern.
The concept of inductive definitions, as used in Lines 34–35 of Listing 3.1
shows that we can express constraints such as connectedness in an easy
way.

We also identify some desirable properties for the systems solving a good KR
specification of the graph mining problem:

6. We want to perform multiple inferences on the problem, with only minimal
changes to the model. In other words, the system should be elaboration
tolerant with respect to other inferences, as well as new constraints.
For example, we might not be interested in just any set of patterns, instead
we might want a set of 5 patterns such that they share the highest number
of nodes.

7. We prefer specification(s) that can (together) be solved in a single solver
call. While specifications are preferably modular to make it easier to reuse
them, ideally the composition of specifications would be solvable by a
single solver call, requiring no procedural code to tie them together.

The higher-order encoding above satisfies the different properties we identify for
a modeling; as such we view it as a preferred way of encoding the graph mining
problem. Nevertheless, state-of-the-art specification systems either [135] do
not accept such specifications, are restricted to model generation and checking
(with or without an imperative interface to implement other inferences such as
minimization) and/or miss the performance of techniques such Conflict Driven
Clause Learning (CDCL) which can (up-to exponentially) reduce the search
space by learning new clauses when encountering conflicts and backjumping.

In the next section, we explore which encoding techniques enable us to
write a working specification for the graph mining problem in state-of-the-art
specification systems: IDP and the systems supporting ASP such as Clingo [59]
in particular.

FIRST-ORDER ENCODINGS OF GRAPH MINING 29

3.5 First-order encodings of Graph Mining

In the previous section, we have shown how graph mining could be specified in
a system that supports higher-order logic. In this section, we investigate how
state-of-the-art KR systems without support for higher-order logic, such as IDP
and systems supporting ASP, can model the graph mining problem, paying
special attention to the use of encoding techniques, which might be used in the
future to support higher-order logic in general.

3.5.1 IDP

First, we will explore how we can encode the graph mining problem in a state-
of-the-art first-order solver such as IDP. We base ourselves on the mathematical
specification of graph mining introduced in Section 3.3, as well as the higher-
order specification explored in Section 3.4.

Existential Second-Order

The IDP language allows problem specifications written in first-order (FO)
logic extended with types, arithmetic, aggregates, and inductive definitions.
Listing 3.2 shows an example. The symbols in theories T of this logic can
be quantified locally, or quantified implicitly in the vocabulary V . Symbols
quantified locally can only be propositional, whereas the vocabulary can contain
first-order symbols such as functions or predicates (making the vocabulary a
second-order object).

In the graph mining problem, we are looking for an interpretation I of the
symbols in vocabulary V such that I satisfies T, called a model. This corresponds
to existential quantification of all (including FO) symbols in V . Listing 3.2
shows an example of how IDP extends a given interpretation S into a model
Result. Due to the existential quantification of symbols in V , and the lack
of locally quantifiable FO symbols, IDP is limited to model expansion for
existential second-order problems, which does not include graph mining. We
will expand on the underlying shortcomings, and how to sidestep them.

Inferences One of the main philosophies of IDP is its underlying Knowledge
Base paradigm [36]. Essentially, this paradigm states that a modeller should
model the knowledge in a problem domain, without thinking of how data
will flow when solving specific queries, or wondering which inference will be
performed. Instead, it should be possible to perform various inferences on

30 ANALYSIS OF GRAPH MINING

Listing 3.2: IDP example using inductive definitions
1 vocabulary V{
2 type node
3 edge(node, node)
4 connected(node, node)
5 }

7 theory T : V {
8 ∀n[node] : ∃n2[node] : edge(n, n2) ∨ edge(n2, n).
9 {

10 connected(x, y) ← edge(x, y) ∨ edge(y, x).
11 connected(x, y) ← ∃z [node] : connected(x, z) ∧ connected(z,y).
12 }
13 }

15 structure S : V{ node = {1;2;3} }

17 structure Result : V{
18 node = {1; 2; 3}, edge = {1,1; 1,2; 2,3}
19 connected = {1,1; 1,2; 1,3; 2,1; 2,2; 2,3; 3,1; 3,2; 3,3}
20 }

a single specification of the graph mining problem. For example, the most
straightforward inference in the case of graph mining would likely be model
expansion. Listing 3.2 shows how model expansion would expand the structure
S into the structure Result. Other inferences of interest for the graph mining
problem are, for example, optimization. Optimization would allow us to, e.g.,
minimize or maximize over the number of nodes in the pattern graph, or the
number of nodes in the pattern with a certain label, with only minimal changes
to the specification of what constitutes a valid pattern.

Definitions versus Constraints A main feature of the IDP language is that
it supports FO formulas as well as a rule-based definition constructs (between
curly braces). The FO formulas express open world knowledge while definitions
express closed world knowledge, representing inductive or recursive definitions
such as the definition of connected/2 in Listing 3.2.

This follows from the use of the well-founded semantics underlying the definition
construct [42]. In IDP, the theory of two atomic FO axioms e1(1,2). e1

(2,1). expresses the open world knowledge that (1,2) and (2,1) belong to
the predicate e1/2, while the definition {e1(1,2). e2(2,1).}, written with
brackets, expresses a definition by exhaustive enumeration, hence the closed
world knowledge that e1 is the set (1,2), (2,1). E.g., the first does not entail
that (1,1) does not belong to e1/2, while the definition does. The theory
in Listing 3.2 expresses that connected is the transitive closure of the edge
relation, and that the connected relation is the total relation. The combination

FIRST-ORDER ENCODINGS OF GRAPH MINING 31

of definition and axiom induces a strong constraint on the value of the edge
relation.

Modeling the graph mining problem in IDP

In this subsection we identify three main issues encountered when modeling the
graph mining problem:

• the representation of graphs,
• local existential (∃) quantification over functions, and
• local universal (∀) quantification over functions.

The paragraphs below discuss each of the issues and provide an overview of the
ways we can currently solve them.

Issue 1: representing graphs First, we must represent the sets of graphs, as
specified in Definition 12. Listing 3.3 shows how this was done in higher-order
logic, defining a higher-order predicate positive/3 with the node predicate,
edge predicate and labeling function as arguments3. The first graph consists
of nodes 1 (labeled a) and 2 (labeled b) and is fully connected. This locally
coherent representation preserves a graph as an independent tuple of predicates
and functions. However, IDP’s vocabulary V cannot contain such a second-order
symbol.

One possible solution is to replicate for each graph the different characteristic
predicates and functions, as shown in Listing 3.4, which uses different predicate
names for every part of every graph. Using this solution, encoding a property
such as “In every graph, all nodes have at least two outgoing edges” must be
stated for every graph and its edge predicate explicitly, as no relation exists
between the different edge predicates and label functions:
∀ n[node] : ∃ n1 [node] n2[node] : e1(n, n1) ∧ e1(n, n2) ∧ n1 6= n2.
∀ n[node] : ∃ n1 [node] n2[node] : e2(n, n1) ∧ e2(n, n2) ∧ n1 6= n2.

It is clear that this solution is not a good KR approach. Furthermore, it is
undesirable due to the way it scales with larger problem instances: it prohibits
the abstraction (generalization) of knowledge in the theory.

3Note the use of inductive definitions, in contrast to constraints, as this allows the derivation
of negative knowledge, i.e., positive/3 only contains these two graphs and no others.

32 ANALYSIS OF GRAPH MINING

Listing 3.3: Higher-order predicate modeling the set G+ of
Definition 12.

1 {
2 positive({1,2}, {1,2; 2,1}, {1 7→a; 27→b}).
3 positive({1,2,3}, {1,3; 2,1}, {1 7→c; 27→b; 37→a}).
4 }

Listing 3.4: Multiple individual
global relations.

1 {
2 e1(1, 2). lb1(1)=a.
3 e1(2, 1). lb1(2)=b.
4 e2(1, 3). lb2(1)=c.
5 e2(2, 1). lb2(2)=b.
6 lb2(3)=a.
7 }

Listing 3.5: Disjoint union using
indexed global relations.

1 {
2 e(g1, 1, 2). lb(g1, 1)=a.
3 e(g1, 2, 1). lb(g1, 2)=b.
4 e(g2, 1, 3). lb(g2, 1)=c.
5 e(g2, 2, 1). lb(g2, 2)=b.
6 lb(g2, 3)=a.
7 }

A more workable solution is to represent each characteristic property, such as the
edge relation, by a single global relation for all graphs, as shown in Listing 3.5.
This relation behaves the way it should for a specific graph instance based
on an additional argument serving as an identifier for the graph of interest.
This global edge relation now corresponds to the disjoint or tagged union of
the graphs’ edge relations, with tags drawn from a set g of graph identifiers.
Generalizing over the different graphs, we can now encode the property stated
above as:
∀ gid[g] : ∀ n[node] : ∃ n1 [node] n2[node] : e(gid, n, n1) ∧ e(gid,

n, n2) ∧ n1 6= n2.

Although this representation based on reification is the de facto standard way of
representing complex objects such as graphs, it is clear that this representation
forces us to give up the local coherence of graph characteristics that was present
in Definition 12. For example, without additional constraints, it is still possible
to specify a graph G only partially, e.g., by providing only an entry in the global
edge/3 relation. Note that the higher-order model from Section 3.4 allows
elegant expression, as it introduces specific terms (tuples and sets) which could
elegantly express these graph characteristics in a way that preserves local
coherence.

Issue 2: local ∃ quantification over functions The positive homomorphic
property can be expressed using a count aggregate, as shown in Listing 3.6.
First we quantify over all example graphs G, or per issue 1, their identifiers,
and subsequently express that there must exist a function F that represents a
homomorphism from our pattern graph P to G.

FIRST-ORDER ENCODINGS OF GRAPH MINING 33

Listing 3.6: Quantifying over functions locally.
1 #{G | G ∈ G+ ∧ ∃ F : F is a homomorphism from P to G} ≥ N+.

However, in IDP we cannot quantify locally over first-order symbols such as
the function F from Listing 3.6, as it only allows first-order quantifications.
We must promote the homomorphic functions to a symbol in the vocabulary,
even though we are only interested in the existence of a mapping, not its
identity. Reusing the disjoint union technique proposed above avoids the need
to introduce a homomorphic function for each example graph separately. Note,
we introduce a function f/2 representing all homomorphisms, and make explicit
its dependency on a specific example graph using an additional argument gId.
In second-order logic, this dependency would follow directly from the syntactic
order of the quantifications.

Listing 3.7: Globalized existential functions
1 vocabulary V {
2 ...
3 partial f(graphid, vertex):vertex
4 ...
5 }
6 ...
7 #{gId | gId ∈ G+ : f(gId) is a homomorphism from P to gId} ≥ N+.

While all example graphs have an edge, label, . . . relation, not all example
graphs have a homomorphic function. Therefore, f is not defined for graph
identifiers that correspond to such graphs, meaning f must become a partial
function.

By adopting this proposed solution, we can now write an IDP specification for
the graph mining problem handling only the positive constraint, as shown in
Listing 3.8. Note that without the negative constraint, the problem is of a
simpler nature (The decision problem is in NP). The next issue discusses how
we can add the negative constraint into our IDP model.

Issue 3: local ∀ quantification over functions It is possible to restate the
negative homomorphic constraint to deciding that no homomorphism exists for
enough of the negative examples. However, deciding that no homomorphism
from one graph to another exists is in coNP. As an NP (or ΣP

1) solver, IDP
cannot solve this problem directly. One might be tempted to simply specify the
negative homomorphic property simply as:

#{g | g ∈ G−: f(g) is a homomorphism from P to g} ≤ N−.

34 ANALYSIS OF GRAPH MINING

Listing 3.8: IDP specification handling the positive constraint of the graph
mining problem.

1 vocabulary V_pos{
2 type vertex isa nat
3 type label
4 type graphid

6 //Predicates determining the template graph.
7 template_node(vertex)
8 template_edge(vertex, vertex)
9 template_label(vertex):label

11 //Predicates describing the pattern graph
12 pattern_node(vertex)
13 pattern_edge(vertex, vertex)
14 pattern_label(vertex):label

16 //Predicates describing the positive example graphs
17 example_edge(graphid, vertex, vertex)
18 example_label(graphid, vertex):label
19 N+: int

21 partial f(graphid, vertex):vertex //Represents the homomorphisms with the example graphs

22 homo_with(graphid) //True for graphs for which f represents a correct homomorphism
23 connected(vertex, vertex) //connected(a, b) is true if there exists a path
24 //from a to b in the pattern
25 }

27 theory Positive:V_pos{
28 //The pattern is a vertex-induced subgraph of the template:
29 ∀x [vertex] : (pattern_node(x) ⇒ template_node(x))
30 ∧ (∀ y [vertex] : pattern_edge(x, y) ⇔ (template_edge(x, y) ∧ pattern_node(x) ∧

 pattern_node(y))) ∧
31 ∧ pattern_label(x) = template_label(x).
32 //The pattern is a connected subgraph of the template: From every node in the pattern,
33 //There exists a path to every other node in the pattern.
34 ∀x [vertex] y[vertex] : x 6= y ∧ pattern_node(x) ∧ pattern_node(y) ⇒ connected(x, y).
35 {
36 connected(x, y) ← pattern_edge(x, y) ∨ pattern_edge(y, x).
37 connected(x, y) ← ∃z[vertex] : connected(x, z) ∧ connected(z, y).
38 }

40 //Existence of a homomorphic f from the pattern to example graph with graphid gid.
41 ∀gid[graphid] : ∀x[vertex] : homo_with(gid) ∧ pattern_node(x) ⇔ ∃ y[vertex] : y=f(

gid,x).
42 ∀gid[graphid] : ∀x [vertex] y[vertex] : homo_with(gid) ∧ pattern_node(x) ∧

pattern_node(y) ∧ x6=y ⇒ f(gid, x) 6= f(gid,y).
43 ∀gid[graphid] : ∀x [vertex] y[vertex] : homo_with(gid) ∧ pattern_node(x) ∧

pattern_node(y) ∧ pattern_edge(x,y) ⇒ example_edge(gid, f(gid,x), f(gid,y)).
44 ∀gid[graphid] : ∀x[vertex] : homo_with(gid) ∧ pattern_node(x) ⇒
45 pattern_label(x) = example_label(gid, f(gid,x)).

47 //At least N homomorphisms must be found
48 #{ gid [graphid] : homo_with(gid) } >= N+.
49 }

FIRST-ORDER ENCODINGS OF GRAPH MINING 35

However, the IDP solver has no obligation to maximize the number of
homomorphisms it finds for f, only to satisfy the constraints. Thus, it can
choose f such that it does not represent a homomorphism for a graph g∈ G−.
As our constraints are satisfied, we are led to believe that our pattern candidate
is a valid pattern.

It follows from results by Immerman [79] that this is inherently linked to
IDPs limit to Existential Second-Order. Indeed, checking that our pattern
P is homomorphic with no more than N− negative graphs is equivalent with
checking that enough negative examples G exist for which no homomorphism
exists (Listing 3.9). This clearly leads to a universal quantification over a
function variable, which IDP cannot express.

Listing 3.9: Quantifying over functions locally.
1 #{g | g ∈ G− ∧ ∀ f : f is not a homomorphism from P to g}

A way to work around this is by encoding the dual (i.e., negated) problem, and
conclude that the problem is satisfied if and only if no model exists for the dual
problem. This can be checked using an NP solver. However, this technique can
only be implemented in IDP by writing two theories:

• one (positive) theory T + (see Listing 3.8), which expresses the positive
homomorphic property and generates pattern candidates, and

• one negative theory T −, shown in Listing 3.10, which expresses the (dual
of) negative homomorphic property and rejects pattern candidates that
do not satisfy this constraint.

In IDP, one must provide procedural code that ties these two theories and their
inferences together, allowing pattern candidates to be communicated between
them.

Canonicity As graph isomorphism is known to be in NP (recent research
suggests it is in the Quasi-Polynomial complexity class QP [7]), the isomorphism
restriction when looking for multiple patterns is no more complex than coNP.
Therefore, we can use the same technique of encoding the dual and performing
a satisfiability check that must fail for the canonicity requirement.

However, it is at this point we take into account the evaluation strategy. As
mentioned above, having two separate theories means that we must tie the
inferences together using procedural code. This can be done using the Lua
interface made available by IDP. However, using this interface, we cannot
prevent having to reground the theory every time an inference is performed.

36 ANALYSIS OF GRAPH MINING

Listing 3.10: IDP specification handling the negative constraint of the graph
mining problem.

1 vocabulary V_neg{
2 type vertex isa nat
3 type label
4 type graphid

6 //Predicates describing the pattern graph
7 pattern_node(vertex)
8 pattern_edge(vertex, vertex)
9 pattern_label(vertex):label

11 //Predicates describing the negative example graphs
12 example_edge(graphid, vertex, vertex)
13 example_label(graphid, vertex):label
14 N−: int

16 partial f(graphid, vertex):vertex //Represents the homomorphisms with the example graphs
17 homo_with(graphid) //True for graphs for which f represents a correct homomorphism
18 }

20 theory Negative:V_neg{
21 //Existence of a homomorphic f from the pattern to example graph with graphid gid.
22 ∀gid[graphid] : ∀x[vertex] : homo_with(gid) ∧ pattern_node(x) ⇔ ∃ y[vertex] : y=f(

gid,x).
23 ∀gid[graphid] : ∀x[vertex] y[vertex] : homo_with(gid) ∧ pattern_node(x) ∧

pattern_node(y) ∧ x6=y ⇒ f(gid, x) 6= f(gid,y).
24 ∀gid[graphid] : ∀x[vertex] y[vertex] : homo_with(gid) ∧ pattern_node(x) ∧

pattern_node(y) ∧ pattern_edge(x,y) ⇒ example_edge(gid, f(gid,x), f(gid,y)).
25 ∀gid[graphid] : ∀x[vertex] : homo_with(gid) ∧ pattern_node(x) ⇒
26 pattern_label(x) = example_label(gid, f(gid,x)).

28 //Can we find more than N− homomorphisms
29 #{ gid [graphid] : homo_with(gid) } >= N−.
30 }

Consequently, to minimize the number of times that we must reground the
theories, we choose to introduce a separate theory T iso (shown in Listing 3.11)
for the canonicity constraint, which generates all isomorphic patterns by finding
values for a unary predicate pattern/1 representing a pattern isomorphic with
pattern_node/1, such that two functions f/1 and g/1 can be found that are
each others inverse and that satisfy the conditions of homomorphisms; i.e., they
preserve edges and labels.

This way, after finding a pattern candidate and checking the positive and
negative homomorphism restriction, we generate all isomorphic patterns and
subsequently introduce additional clauses in the candidate generation process
which prohibit these patterns from becoming candidates.

FIRST-ORDER ENCODINGS OF GRAPH MINING 37

Listing 3.11: IDP specification handling the canonicity constraint of the graph
mining problem.

1 vocabulary V{
2 type vertex isa nat
3 type label

5 //Predicates describing the pattern graph
6 pattern_node(vertex)
7 pattern_edge(vertex, vertex)
8 pattern_label(vertex):label

10 //Predicates describing the template
11 template_node(vertex)
12 template_edge(vertex, vertex)
13 template_label(vertex):label

15 //Predicate describing an isomorphic pattern
16 pattern(vertex)

18 partial f(vertex):vertex //The homomorphism from pattern_node to pattern.
19 partial g(vertex):vertex //The homomorphism from pattern to pattern_node.
20 }

22 theory iso:V{
23 //f and g only have an image for vertices in pattern_node / pattern respectively.
24 ∀x [vertex] pattern_node(x) ⇔ ∃ y: y = g(x).
25 ∀x [vertex] pattern(x) ⇔ ∃ y: y = f(x).

27 ∀x [vertex]: pattern(x) ⇒ pattern_node(f(x)).
28 ∀x [vertex]: pattern_node(x) ⇒ pattern(g(x)).

30 //f and g preserve edges
31 ∀x [vertex] y [vertex]: pattern_node(x) ∧ pattern_node(y) ∧ template_edge(x, y) ⇒

template_edge(g(x), g(y)).
32 ∀x [vertex] y [vertex]: pattern(x) ∧ pattern(y) ∧ template_edge(x,y) ⇒ template_edge(

f(x), f(y)).
33 //f and g preserve labels
34 ∀x [vertex]: pattern_node(x) ⇒ template_label(x) = template_label(g(x)).
35 ∀x [vertex]: pattern(x) ⇒ template_label(x) = template_label(f(x)).
36 //f and g are injective
37 ∀x [vertex] y [vertex]: x < y ∧ pattern(x) ∧ pattern(y) ⇒ f(x) 6= f(y).
38 ∀x [vertex] y [vertex]: x < y ∧ pattern_node(x) ∧ pattern_node(y) ⇒ g(x) 6= g(y).
39 //f and g are each others inverse
40 ∀x [vertex] : pattern(x) ⇒ g(f(x)) = x.
41 }

38 ANALYSIS OF GRAPH MINING

Visualising the Constraints

Retaking the example graph mining instance from Section 3.3 (See Figure 3.5),
which consisted of 1 positive and 1 negative example, together with a template
graph, and setting the graph mining parameters N+ = 1, N− = 0, we illustrate
how the different constraints affect the possible patterns. We consider a subset
of the candidate pattern space in Figure 3.6.

(a) Positive Example (b) Negative Example (c) Template Graph

Figure 3.5: (Repeat) A graph mining instance with (N+ = 1, N− = 0).

First, Lines 28–31 of T + (Listing 3.8) ensure that patterns are vertex-induced
subgraphs of the template. This consists of three subconditions: that (Line 29)
the nodes of a candidate pattern are a subset of the nodes the template graph,
that (Line 30) if the template features an edge between two selected nodes, the
candidates must feature this edge as well, and that (Line 31) a node’s label
remains unchanged.

With the pattern candidates visualized in Figure 3.6, this constraint prunes
candidate 3.6a, as it misses the diagonal edge in the hexagon present
in template graph 3.5c, failing the second subcondition. It also prunes
candidate 3.6d, because the rightmost node’s label has changed into a diamond,
and candidate 3.6e as it has too many diagonal edges, again failing the second
subcondition.

Lines 34–38 prune any candidates that are not connected, such as 3.6c.

Lines 41–48 prune candidates that do not occur often enough in the positive
examples (for this toy instance, at least once). The constraints of Lines 41–45
ensure that in case homo_with(gid) is true, the following holds: a mapping (1)
must exist, (2) it must preserve inequality, (3) it must preserve the patterns
edges, and (4) it must preserve labels, respectively. Line 48 specifies that
enough homomorphisms must exist (at least one). As a result, candidates 3.6d
and 3.6e are pruned, as no mapping exists for 3.6e to positive example 3.5a
that preserves the diamond label and no mapping for 3.6d preserves all diagonal
edges.

Lastly, the negative theory T − (Listing 3.10) uses the same constraints as T +

Lines 41–48 to find patterns that are homomorphic with too many negative

FIRST-ORDER ENCODINGS OF GRAPH MINING 39

examples. These constraints prune 3.6f, as a possible mapping was shown earlier,
in Section 3.3, Figure 3.3.

(a) (b) (c) (d) (e) (f)

Figure 3.6: A subset of the pattern space for Figure 3.5.

Solving the graph mining problem using IDP

Now that we have modelled the graph mining problem in IDP, we also want to
use this model to solve graph mining problems. As our model consists of multiple
theories, we must use procedural code to tie together different inferences on
the different theories, to eventually produce the correct answers. From the
discussion above, we identify three main theories:

• T + that generates a pattern, satisfying the positive homomorphic
constraint,

• T − that checks the negative homomorphic constraint, and

• T iso, that generates all isomorphic patterns.

The entire procedural loop can then be described as follows:

1. We first ask IDP for a model of T +.

2. We extract from this model the pattern candidate (i.e., the value of
pattern_node/1, pattern_edge/2 and pattern_label/1) and, using the
satisfiability inference, check whether it satisfies T −; note that as T −
encodes the dual of the negative homomorphic constraint, failing the
satisfiability check means the negative homomorphic constraint is satisfied
and vice versa.

3. Regardless of whether the generated candidate satisfied T −, we let T iso
generate all its isomorphic patterns. These can be transformed to clauses
that, when added to T +, prevent generation of isomorphic pattern
candidates: such clauses state that it must not be true that a future
generated pattern consists of exactly those nodes.

4. We repeat this process until the necessary number of patterns was found
or the search space was exhausted.

40 ANALYSIS OF GRAPH MINING

3.5.2 ASP

The ASP language is closely related to IDP. An ASP encoding consists of a set
of rules, which allow us to derive the head of a rule whenever its body is true.
The head and body of a rule can contain variables, as long as every variable
is safe, meaning it occurs positively in the body. In this case the head can be
derived for any assignment to the variables that makes the body true.

One of the main differences between ASP and IDP is the choice of semantics:
ASP looks for the answer set models, whereas IDP looks for well-founded models.
Leveraging the minimality property of answer sets, ASP can prevent the invalid
models of the example discussed in Issue 3: local ∀ quantification over functions,
without creating two separate theories or writing procedural code. Instead,
it relies on an encoding technique called the saturation technique [46], which
we will discuss in Section 3.5.2 when we discuss how to encode the negative
homomorphic property.

Another difference between ASP and IDP is that the former generally only allows
uninterpreted functions, which can be viewed as constructors that bring structure
in data. However, our specification of the graph mining problem features many
interpreted functions, i.e., those representing a homomorphism between two
graphs. Luckily, we can represent n-ary functions such as pattern_label/1

using an n+ 1-ary predicate, and express functionality constraints explicitly.

Modeling the graph mining problem in ASP

Listing 3.13 shows the ASP specification of the graph mining problem. Note
that we use the same naming scheme pattern_node/1, pattern_edge/2 and
pattern_label/2, and introduce the constants np and nm to correspond to the
problem parameters N+ and N−, respectively.

We identify the same three issues for ASP as we had for IDP namely representing
graphs, local ∃ quantification over functions and local ∀ quantification over
functions. Due to the close relation between IDP and ASP, it is not surprising
that the first two issues are once again solved using the same global disjoint
union technique as explained in the sections discussing the representation of
graphs and the local ∃ quantification over functions in IDP.

However, as ASP does not allow functions, we represent n-ary functions such
as pattern_label/1 using an n + 1-ary predicate, and express functionality
constraints explicitly.

FIRST-ORDER ENCODINGS OF GRAPH MINING 41

Generating pattern candidates As in Listing 3.8, we will first specify that
the pattern is a vertex-induced subgraph of the template (Lines 5–7):

• First, we open up the pattern_node/1 predicate using a choice rule.
(Line 5)

• we state that every edge in the template between two pattern nodes
implies a corresponding edge in the pattern.

• we specify that every pattern node preserves the unique label it had in
the template.

As patterns must be connected, we include a set of rules and constraints
expressing that every node of the pattern must be connected to every other
node of the pattern (Lines 10–14). As with IDP, for the earlier introduced toy
example from Figure 3.5, these constraints filter candidates 3.6a, 3.6d, and
3.6e because they do not represent vertex-induced subgraphs, and 3.6c as it
violates connectedness.

Positive homomorphisms First, we will look at the positive homomorphic
constraint, specifying the necessary number of homomorphisms with positive
examples. First, we guess for every positive example graph whether a
homomorphism exists using a choice rule (Line 17), and represent these graphs
using homo_with(G). For every positive graph G with a homomorphism, we create
a mapping f(G,X,V) relating a graph id G and pattern node X with exactly one
example node V (Line 18). We introduce constraints such that, for each positive
example graph with a homomorphism, the mapping must be injective and
must preserve edges as well as labels (Lines 20–22). We conclude the positive
constraint by specifying that the number of mappings that correspond with
a homomorphism should be higher or equal to our threshold N+ (Line 24).
Again, this constraint filters candidates 3.6d and 3.6e.

Negative homomorphisms We now look at how to encode the negative
homomorphic constraint, which specifies that the number of homomorphisms
with negative graphs does not exceed N−. To encode this in the same model,
we use the saturation technique [46]: a powerful encoding technique that can
check whether a certain property P holds for all possible interpretations. This
corresponds to formulas of the form ∃X∀Y , where the quantifications are second-
order, which captures complexity class ΣP

2 -complete. The technique relies on
the fact that every answer set is a minimal model.

Specifically, the technique extends the traditional guess-and-check paradigm
of Answer Set modeling; the guess-and-check paradigm identifies two parts in
every ASP model, i.e., Pguess and Pcheck, that respectively add rules to guess a

42 ANALYSIS OF GRAPH MINING

solution and to check the guessed solution. Encodings using saturation add a
third part, usually referred to as Psat. First, the modeler must devise an answer
set Msat such that all other possible answer sets candidates M are a subset of
Msat. Then, in Psat the modeler must write the rules necessary to extend or
saturate any answer set candidate in which the property P is found to hold.
Minimality of answer sets now ensures that the answer set candidate Msat is an
answer set if and only if the property holds for all guesses.

We first illustrate this technique on the well-known example of three-colorability
of a graph given by a node/1 and an edge/2 predicate. Answer set candidates
will provide an interpretation of the predicate color/2 assigning colors to nodes;
if the graph is three-colorable, every node will be assigned exactly one color.
If, however, every assignment of colors to nodes breaks the rules of a coloring
- this is our universal property P - we want to derive answer set Msat, which
assigns every node all three colors at once. Note that every candidate coloring
is indeed a subset of Msat .

Looking at the model of Listing 3.12, we see that Pguess (Line 2) guesses a
possible coloring using disjunction. Next, Pcheck (Lines 5–6) checks whether the
coloring is valid, i.e., neighbors have different colors and no two colors for a
single node. It derives saturate if the guessed coloring is not valid. Finally, Psat

(Lines 9–11) ensures that any invalid guesses derive the unique model Msat,
ensuring that it is the only answer set iff all possible guesses are invalid.

In summary, given any interpretation of the predicates node/1 and edge/2, if a
valid coloring exists every answer set will correspond to a valid covering and
vice versa. If, on the other hand, no valid coloring exists, Msat will be the
unique answer set of Listing 3.12.

Listing 3.12: Saturation encoding for three-colorability, as taken from [46].
1 %Pguess
2 color(X,red) | color(X,green) | color(X,blue) :- node(X).

4 %Pcheck
5 saturate :- edge(X,Y), color(X,C), color(Y,C).
6 saturate :- node(X), color(X,C1), color(X, C2), C1 != C2.

8 %Psat
9 color(X,red) :- node(X), saturate.

10 color(X,blue) :- node(X), saturate.
11 color(X,green) :- node(X), saturate.

To apply the saturation technique in the negative homomorphisms check, we
guess an assignment for f such that in every negative example graph G each
pattern node X is mapped to at least one example node V (Line 27). It is
important to note that this formulation does not prevent that f maps X to more
than one example node; as we will see shortly, this is essential for the saturation

FIRST-ORDER ENCODINGS OF GRAPH MINING 43

technique.

The next rule (Line 28) corresponds to Psat. In this rule we express that if
we can derive saturated(G) for a specific graph G, we will saturate f for G by
mapping every template node X to every example node V.

We finish the saturation encoding by providing Pcheck. Pcheck derives saturated(
G) whenever our guess for f does not represent a homomorphism (Lines 32–36).
Possible reasons are that the mapping is not injective, does not preserve edges,
or does not preserve labels.

To conclude the encoding of the negative homomorphic constraint, we specify
that the pattern is allowed to be homomorphic with at most N− negative
examples (Lines 38–39). In our toy example, this prunes candidate 3.6f.

Canonicity The same saturation technique can be applied to the isomorphism
restriction, making it possible to model the entire graph mining problem in
a single model. We also introduce the notion of a lexicographical ordering of
graphs, based on the natural order of the nodes: we presume the #max and #min

aggregates on nodes are defined, and a successor predicate succ/2 is available
that holds for any two nodes a, b s.t. b immediately follows a in this natural
order. A graph G is lexicographically smaller than a graph G’ if the smallest
node not shared between G and G’ is a node of G. We can now say that a
pattern P is canonical if it is the lexicographically smallest graph among all its
isomorphic graphs. The main idea is that for every choice for pattern_node/1,
we want ASP to find an isomorphism with another subset of template nodes
that is lexicographically smaller (i.e., a counterexample for the statement that
pattern_node/1 is canonical). If ASP cannot find such an isomorphism, we
saturate the answer set. Thus, saturated answer sets correspond to choices for
pattern_node/1 s.t. no lexicographically smaller isomorphic graph exists, which
are exactly the canonical patterns.

Looking at our model (Lines 42–45), to enforce canonicity we again guess a
relation, in this case iso/2. Semantically, iso/2 is the predicate representation
of a function between nodes of the pattern and nodes of a hypothetical, different
and canonical form of that same pattern. Such a function does not exist if the
pattern itself is, in fact, canonical: In that case iso/2 will be saturated.

Because we only want answer sets that correspond to canonical patterns, after
including the saturation rule Psat (28) for iso/2, we add a constraint saying
that all answer sets must be saturated. Furthermore, we create two helper
predicates:

• isoNode/1 which is true for those nodes in the image of iso/2, and

44 ANALYSIS OF GRAPH MINING

• compl/1 which is true for those nodes not in the image of iso/2.

Because in some situations we will saturate iso/2, we cannot define compl

/1 as compl(X):-not isoNode(X), as this would make the resulting saturated
answer set unstable (The rules deriving compl would disappear from the Gelfond-
Lifschitz reduct).

Therefore, we define by induction a helper predicate codCT(X,Y) which is true
iff X is not the unique image of Y or any smaller node. Note that we do this
without negation of any saturated symbols (iso/2, isoNode/1).

1. This trivially holds for the smallest node F if it is not a pattern node, as
then F is not in the domain of iso/2 (Line 51).

2. This holds for the smallest node F if iso/2 maps F to a node differing
from X (Line 52).

3. This holds by induction for the tuple (X,Y) if it holds for the node preceding
Y and either Y is not a pattern node (Line 53) or Y is mapped to a node
differing from X (Line 54).

We can now define compl as the nodes X s.t. codCT holds for the largest node,
i.e., it is not the image of the highest node or any below it.

Next, we must specify when we saturate (Pcheck). This occurs whenever iso

/2 does not represent an isomorphism (because it does not preserve edges,
labels, or is not injective), or when iso/2 represents an isomorphism with a
graph that is not lexicographically smaller. To encode this last condition, we
define by induction (Lines 71–75) a predicate identity_below/1 which indicates
that up to, but not including a certain node, pattern_node/1 and isoNode/1

are identical. Now, whenever there exists a node such that pattern_node/1

and isoNode/1 are identical up to that node, and that node itself is part of
pattern_node/1 but not of isoNode/1 (expressed by the complement compl/1),
we must saturate. Likewise, we must saturate whenever pattern_node/1 and
isoNode/1 are identical, which we handle in Lines 66 and 74–75.

Saturation technique Saturation as a technique is a powerful way of including
constraints that are expressed using formulas with second-order universal
quantification (i.e., corresponding to ΣP2 decision problems). Examples of such
constraints are the introduction of negative example graphs or the canonicity of
patterns as discussed above, but also other constraints that impose a preference
order on patterns, e.g., maximality (prevents patterns that are subsets of other
patterns) or coverage (orders patterns by comparing the set of matched positive
patterns using subset ordering).

FIRST-ORDER ENCODINGS OF GRAPH MINING 45

While the saturation technique successfully prevents the need of a procedural
loop for such constraints, it is clear that this technique is not derived from a
natural KR translation of the Graph Mining definition. For instance, one of
the pitfalls when using saturation encodings is the use of negations in Pguess

and Pcheck, which can easily break the encoding by making the saturated model
unstable [119]. As a result, one must take care when using aggregates, for
example, as these advanced language constructs introduce negations in their
translation. To alleviate some of these concerns, efforts have been made to
automate saturation [48].

Solving the graph mining problem using ASP

As ASP is able to represent the graph mining problem using a single model,
solving the graph mining problem using ASP is pretty straight-forward. However,
it is important to note that by default, finding a different homomorphism
between a canonical pattern and an example would lead to a different answer
set. However, as the pattern itself is the same, this is in fact not a new solution.
As such, we must limit the answer sets to those that differ for their choice of
pattern nodes. Using a solver such as clingo, this is possible by enabling answer
set projection [61], which limits the different answer sets to those that differ on
a specific set of facts. By specifically projecting to the facts representing the
pattern nodes, we obtain the desired behavior.

Listing 3.13: ASP using the saturation technique.
1 #const nm = N−.
2 #const np = N+.

4 % Patterns are vertex-induced subgraphs of the template
5 0 { pattern_node(X) } 1 :- template_node(X).
6 pattern_edge(X, Y) :- pattern_node(X), pattern_node(Y), template_edge(X, Y).
7 pattern_label(X, V) :- pattern_node(X), template_label(X, V).

9 % Patterns are connected
10 connected(X) :- #min{Y : pattern_node(Y)}=X.
11 connected(Y) :- connected(X), pattern_edge(X, Y), X != Y.
12 connected(Y) :- connected(X), pattern_edge(Y, X), X != Y.

14 :- pattern_node(X), not connected(X).

16 % Positive homomorphic constraint:
17 { homo_with(G) } :- positive(G).
18 1 { f(G, X, V) : example_node(G, V) } 1 :- homo_with(G), pattern_node(X).

20 :- homo_with(G), pattern_node(X), pattern_node(Y), X != Y, example_node(G, V), f(G, X, V),
f(G, Y, V).

21 :- homo_with(G), f(G, X, V1), f(G, Y, V2), template_edge(X, Y), not example_edge(G, V1, V2
), pattern_node(X), pattern_node(Y).

22 :- homo_with(G), pattern_node(X), f(G, X, V), pattern_label(X, L), example_label(G, V, L2)
, L != L2.

24 :- #count{G:homo_with(G)} < np.

46 ANALYSIS OF GRAPH MINING

26 % Negative homomorphic constraint:
27 f(G, X, V) : example_node(G, V) :- pattern_node(X), negative(G). % Pguess
28 f(G, X, V) :- saturated(G), pattern_node(X), example_node(G, V). % Psat

30 % The following lines describe the reasons for a graph to be saturated (Pcheck):
31 % We cannot map two different pattern nodes to the same example node.
32 saturated(G) :- negative(G), f(G, X, V), f(G, Y, V), X != Y, pattern_node(X), pattern_node

(Y).
33 % The mapping must preserve edges.
34 saturated(G) :- negative(G), template_edge(X, Y), f(G, X, V1), f(G, Y, V2), not

example_edge(G, V1, V2), pattern_node(X), pattern_node(Y).
35 % The mapping must preserve labels.
36 saturated(G) :- negative(G), template_node(X), f(G, X, V), template_label(X, L),

example_label(G, V, L2), L != L2.

38 neg_homo_with(G) :- not saturated(G), negative(G).
39 :- #count{G:neg_homo_with(G)} > nm.

41 % Canonicity constraint:
42 iso(X, V) : template_node(V) :- pattern_node(X). % Pguess
43 iso(X, V) :- pattern_node(X), template_node(V), sat. %Psat
44 :- not sat.
45

47 isoNode(V) :- iso(X, V).
48 compl(X) :- template_node(X), codCT(X, M), M=#max{Z:template_node(Z)}.

50 %codCT(X,Y): X is not the image of iso for Y or any node below it
51 codCT(X, F) :- template_node(X), not pattern_node(F), F=#min{Z:template_node(Z)}.
52 codCT(X, F) :- template_node(X), iso(F, Y), Y!=X, F=#min{Z:template_node(Z)}.
53 codCT(X, B) :- template_node(B), succ(A, B), codCT(X, A), not pattern_node(B).
54 codCT(X, B) :- template_node(B), succ(A, B), codCT(X, A), iso(B, Y), Y!= X.

56 % iso must preserve edges
57 sat :- iso(X, W), iso(Y, Z), template_edge(X, Y), not template_edge(W, Z).
58 sat :- iso(X, W), iso(Y, Z), not template_edge(X, Y), template_edge(W, Z).
59 % iso must preserve labels
60 sat :- iso(X, Y), template_label(X, L1), template_label(Y, L2), L1!=L2.
61 % iso must be injective
62 sat :- iso(X, Y), iso(X, Z), Y!=Z.
63 % The inverse of iso must be injective
64 sat :- iso(X1, Y), iso(X2, Y), X2!=X1.
65 sat :- identity_below(X), pattern_node(X), compl(X).
66 sat :- identity_below(sup).

68 % identity_below(X) iff every node below (not including) X is either
69 % - in the iso candidate and the pattern, or
70 % - not in the iso candidate nor in the pattern.
71 identity_below(M) :- #min{X:template_node(X)}=M.
72 identity_below(X) :- template_node(X), succ(Y, X), identity_below(Y), pattern_node(Y),

isoNode(Y).
73 identity_below(X) :- template_node(X), succ(Y, X), identity_below(Y), not pattern_node(Y),

compl(Y).
74 identity_below(sup) :- identity_below(M), #max{X:template_node(X)}=M, pattern_node(M),

isoNode(M).
75 identity_below(sup) :- identity_below(M), #max{X:template_node(X)}=M, not pattern_node(M),

compl(M).

77 #show pattern_node/1.

FIRST-ORDER ENCODINGS OF GRAPH MINING 47

3.5.3 Comparative Summary

In Section 3.4.3, we have identified a set of desirable properties that a good
KR specification should satisfy. Table 3.1 summarizes how IDP and ASP score
with respect to these properties.

Property IDP ASP
1. Graph as a single

object
No: Global disjoint
union technique

No: Global disjoint
union technique

2. Independence of
homomorphisms

No: Global disj. union
& partial function

No: Global disj. union
& partial function

3. Similarity of ≥ and
≤ constraint

Partial: Similar but
theory splitting

required

No: Requires
saturation technique

4. Multiple patterns
(isomorphism)

No: theory splitting
required

Yes: Using saturation
technique

5. Connectedness Yes: Using inductive
definitions

Yes: Using ASP rules

6. Multiple inferences Yes: Model checking,
expansion,

minimization

Yes: Model checking,
expansion,

minimization
7. Single solver call No: Two calls, one

model per pattern
Partial: One answer set

per pattern

Table 3.1: Summary of the desirable properties in IDP and ASP.

3.5.4 Performance experiments

In this section, we will investigate the performance of both the IDP as well as
the ASP model. These experiments were performed on a Ubuntu 16.04 LTS
system with an Intel i7-4770 CPU @ 3.40GHz, with 8GB RAM, on which IDP
(version 3.7.0) and Clingo (version 5.2.2) were installed. Every experiment was
run with an 8 GB memory limit and a 20 hour time limit.

We created graph mining problem instances from two well-known machine
learning datasets [123]: mutagenesis and yoshida. These datasets consist of a
set of labeled graphs representing labeled molecules;

• in yoshida 265 molecules are ranked according to their bioavailability, and

• in mutagenesis, 230 molecules are trialed for their mutagenicity on
Salmonella.

Most discussions of state-of-the-art specialized algorithms do not use any
negative examples. However, the mutagenesis dataset allows us to characterize

48 ANALYSIS OF GRAPH MINING

92 molecules as ‘negative’, specifically those who inhibit the mutability
of Salmonella (i.e., a mutagenicity of ≤ 1). As our specifications easily
accommodate a dataset with negative examples, we create graph mining
instances from the yoshida and mutagenesis datasets by randomly selecting one
positively labeled graph from the dataset to serve as the template required for
our solution. Next, we chose values for N+ and N−: For yoshida, which only
has positive examples, we chose an N+ value of 26 (10% of the dataset). For
mutagenesis we chose an N+ of 90 (66% of the positive examples) and 30 (33%
of the negative examples). We used both the ASP and the IDP solution to
compute 120 canonical (i.e., non-isomorphic) patterns.

Results

Yoshida: The results for the yoshida dataset are visualized in Figure 3.7
(Note the need for different scales). Since IDP as a byproduct, can list all
isomorphic solutions for each canonical pattern, we have cross-validated the
results of both solvers.

It is clear that the ASP solution, which utilizes a single solver process,
outperforms the IDP system, which must repeatedly ground the same problem
due to the interaction of generating pattern candidates satisfying the positive
homomorphic constraint and checking canonicity of pattern candidates. As
the yoshida dataset only contains positive examples, we can also illustrate the
performance of state-of-the-art specialized algorithms. However, specialized
algorithms such as gSpan generally mine all patterns, and do this without
requiring a specific template graph: it can use any graph in the database as a
template. As such, we have mined all patterns for our yoshida instance; this
takes about 1.39 seconds for gSpan [115]. Comparatively, when Clingo (ASP)
and IDP are asked to mine all patterns, ASP takes about 282.5 seconds, whereas
IDP does not finish within the time limit of 20 hours.

Mutagenesis: When mining the mutagenesis dataset for patterns with N+ =
90 and N− = 30, IDP does not find any patterns before the time limit of 20
hours has passed. The results for ASP are shown in Figure 3.8, which mines
120 patterns in a little under four hours.

Discussion

It is clear from these experiments that state-of-the-art specialized algorithms
outperform our declarative solutions by several orders of magnitude. However,

FIRST-ORDER ENCODINGS OF GRAPH MINING 49

0 20 40 60 80 100 120
pattern #

2 × 101

3 × 101

4 × 101

6 × 101

se
co

nd
s

Cumulative time ASP [Yoshida].
ASP

0 20 40 60 80 100 120
pattern #

102

103

104

se
co

nd
s

Cumulative time IDP [Yoshida].
IDP

Figure 3.7: Cumulative run times for the Yoshida dataset.

0 20 40 60 80 100 120
pattern #

103

104

se
co

nd
s

Cumulative time ASP [Mutagenesis].
ASP

Figure 3.8: Cumulative ASP run time for the mutagenesis dataset.

our declarative solutions can easily be extended to support negative examples,
such as those in the mutagenesis dataset, whereas specialized algorithms
require an extensive overhaul. This is an example of the level of Elaboration
Tolerance [105] that declarative languages exhibit. This gives declarative
approaches a great benefit in use cases where performance is not the primordial
factor, for example while prototyping or when requirements frequently change.

These experiments also show a clear divide between the ASP language and the
IDP language. While ASP solvers can encode ΣP2 -complete constraints using the
saturation technique, IDP must resort to multiple solver instances tied together
using procedural code. As a result, IDP must ground the problem repeatedly
and, as communication between the solver instances is limited, is not able to
learn valuable information about when a candidate will or will not pass the
checks performed by different solver instances. On the other hand, constraints
featuring second-order universal quantification are only supported by ASP using
the advanced saturation technique, reducing the ‘naturality’ of the encoding.

50 ANALYSIS OF GRAPH MINING

In the next section, we reconsider the higher-order model of Section 3.4, and
look how declarative systems, in particular IDP, can introduce support for such
higher-order models.

3.6 Solver Techniques

In the previous sections, we have established that (1) an intuitive encoding of
the graph mining problem exists using higher-order logic, and that (2) encoding
techniques are required to express the problem in a specification language based
on first-order logic. Regrettably, these encoding techniques decrease the graph
mining model’s intuitiveness and can be a significant hurdle for the modeller.
This section investigates the encoding techniques encountered in Section 3.5
so as to identify ways to generalize these techniques and integrate them in
the solver, effectively shifting the burden of these techniques from modeller
to solver by supporting higher-order specifications. Specifically, integration
techniques are suggested for the state-of-the-art IDP-system, which currently
uses a typical ground-and-solve technique [87]. In a ground-and-solve system,
two distinct phases can be identified: in the first phase, all quantifications are
instantiated such that the encoding does not contain any variables, while in the
second a SAT-solver finds a model for the resulting ground instance. In general,
techniques that support higher-order logic will interleave these two phases in
various degrees.

One concern typically raised in the context of solver for higher-order logic is that
rising language expressivity will go hand in hand with decreasing performance.
From a theoretical point of view, this is clearly a valid concern, however our
hypothesis is that, in practice, expressing real-world problems using higher-
order logic does not necessarily include a performance loss with respect to their
previous first-order encodings. Furthermore, the additional structure expressed
in higher-order encodings might even allow for a performance gain. Specifically,
an important aspect through which we think a higher-order encoding, when
supported with the right solver techniques, can in increase performance is
independence analysis, i.e., the discovery of independent subproblems. Some
support for the claim that better independence analysis will lead to better
performance can be found on the propositional level, in recent work [101, 116]
from the Quantified Boolean Formulas (QBF) research community. This
work shows the benefit of estimating or learning the dependencies between
quantifications of propositional variables. Writing down knowledge in a more
expressive language such as higher-order logic leads to the availability of
additional structure and latent constraints in the knowledge specification.
Often, using the additional structure available, we already express many

SOLVER TECHNIQUES 51

Listing 3.14: Excerpt of the HO specification of graph mining.
1 homomorphism((N1, E1, L1), (N2, E2, L2)) ←
2

(
∃SO F [N1:N2]: (∀ x, y [N1]: x 6= y ⇒ F(x) 6= F(y)) ∧

3 (∀ x [N1] y [N1]: E1(x, y) ⇒ E2(F(x), F(y))) ∧
4 (∀ x [N1]: L1(x) = L2(F(x)))

)
.

5 ...
6 (#{ Pos : positive(Pos) ∧ homomorphism((N,E,L), Pos) } ≥ N+)
7 ...

interesting (in)dependencies. Consider the following two examples: First,
when we existentially quantify over a (set of) higher-order object(s) satisfying a
constraint, we can look for this (set of) object(s) independently from the larger
problem. Second, in the case of a universal quantification of a higher-order
object, we can check the relevant constraints for every possible instantiation of
this higher-order quantification separately.

Returning to the higher-order modeling of graph mining, for example, it is clear
that the question of whether two specific graphs match is a subproblem which can
be solved independently of other matchings. This independence is signalled by
the quantification over graphs (N,E,L) (Line 6 of Listing 3.14), even though it
is hidden in the aggregate expression counting homomorphisms. Further evidence
of the independence can be found in the definition of homomorphism/2, as it uses
only two types of symbols: locally quantified symbols and predicate arguments.
A smart solver should analyse the higher-order specification to detect and exploit
these (in)dependencies, and, when discussing solver techniques, we will pay
specific attention to how this can be achieved.

3.6.1 Nested Solvers

As was pointed out in Section 3.5, two of the main issues with higher-order
encodings for systems such as IDP are (1) the ∀ quantification over higher-
order objects such as functions and predicates, and (2) the occurrence of
local quantification, both existential as well as universal. The technique of
nested solvers addresses both these issues: when presented with a universal
quantification or any local quantification over a function or predicate, the solver
can spawn another, secondary instance of itself which is identical except for the
specification being solved. Indeed, this second instance, also called an oracle
is initialised with that part of the original specification where the quantified
symbol is in scope, possibly transformed to an existential quantification.

At the propositional level, Bogaerts et al. [17] recently explored the idea of solving
QBF instances using nested SAT solvers supporting CDCL, with favourable

52 ANALYSIS OF GRAPH MINING

results. Their underlying idea is to use the identity ∀x : φ1 ⇔ ¬∃x : ¬φ1 to
transform arbitrary formulas to the form ∃x : (φ ∧ ¬∃y : ψ). They show how
the top solver can perform standard SAT-solver propagation on φ, and how
the second solver (the oracle) can check whether there exists an assignment y
satisfying ψ. It is important to note that as the transformation above introduces
negations in front of the quantification ∃y, the oracle call is performed in a
negative context: modelsM of Oψ are transformed into conflicts and learned
clauses C for the top solver. This approach effectively construes a QBF solver,
and as predicted, this technique can exploit (in)depencies. While QCDCL [102]
traditionally limits the order in which variables can be decided to the order in
which they are specified in the quantifier prefix, this restriction is not necessary
when working with nested solvers, opening up research tracks on the effects
of eager versus lazy calling of the nested solver, or the effect of splitting up
variables in a single quantifier prefix level if they are independent.

This technique, taken from the propositional level, can be recreated at the
predicate level by rewriting and splitting theories and handing them off to
separate, nested solvers functioning as oracles. As on the propositional level, we
are faced with the same trade off between eager and lazy calling of nested solvers.
Another research challenge is the transformation of modelsM to learned clauses
C: as multiple models for the oracle’s theory can exist, one can follow different
approaches for transforming one or more models of the theory into a learned
clause.

On the level of predicates, the nested solver technique is closely related
to “modulo-theory” frameworks such as SAT-modulo-theory or ASP-modulo-
theory [59]. These frameworks offer a way of injecting procedural code for
complex problems using global constraints. One example is the injection of
prefix-projection [89] in recent declarative approaches to sequential pattern
mining [4]. By contrast, the nested solvers technique does not inject procedural
code, instead it injects another solver instance (an oracle). Thus, in the nested
solver approach, even the injected knowledge is specified declaratively, and, in a
full implementation, the split points between the levels of solvers are introduced
without involvement of the user.

Nested solvers in Graph Mining: Turning back to graph mining, and looking
only at the positive homomorphism requirement and the non isomorphism
requirement, we identify three different strategies for introducing oracle calls to
the graph mining problem. These three strategies correspond to different options
for splitting the graph mining specification, and we will call these strategies the
monolithic, the semi decomposed and the fully decomposed strategies.
All three are visualized in Figure 3.9, where every (sub)solver or oracle call

SOLVER TECHNIQUES 53

is represented as an IDP block, and the different positive example graphs are
labeled as Ex1, Ex2 and Ex3. In each case, the main or top-level solver is the
leftmost IDP block, responsible for generating candidates.

• The monolithic strategy is the default strategy as explained in
Section 3.5.2. As such, this strategy could only gain from a tighter
integration between solver instances, which would allow reuse of grounding
and efficient communication of learned clauses.
This strategy splits off the generation of a pattern candidate and checking
the positive homomorphism constraint, from the non isomorphism check. It
thus consists of only two solver instances: one that takes the template and
all example graphs, subsequently producing a pattern candidate satisfying
the positive constraint; and one that, using the other patterns, checks
whether a pattern candidate is isomorphic to an already discovered pattern.
This second solver then reports back to the first, and the necessary clauses
are generated to prevent generating the same pattern candidate again.

• The semi decomposed strategy further splits off the generation of a
pattern candidate from the test phase where the solver checks whether the
pattern candidate is homomorphic with sufficiently many positive example
graphs. Based on the outcome of this check, the solver either reports back
to the first solver, which can register that the pattern candidate was not a
valid pattern and generates the necessary clauses to prevent regeneration,
or it passes the pattern candidate on to a third solver performing the non
isomorphism check as in the case of the monolithic strategy.

• the fully decomposed strategy exploits the independence between the
different positive example graphs; it introduces a separate oracle call for
each example graph, reporting the results of the checks to an aggregation
unit. This aggregation unit then reports back to either the first solver or
to another solver performing the non isomorphism check as in the case of
the monolithic strategy.

Note that all three strategies split the theory on points where quantifications
are used in the theory; in fact, they each correspond to a splitting strategy:

• The monolithic approach splits only when encountering a second-order
universal quantification, which would put the problem outside of the
expressive power of a conventional SAT solver.

• The fully decomposed approach splits the theory when encountering
any second-order quantification; this includes the existential second-order
quantification present in the definition of homomorphism/2 in Listing 3.14.

54 ANALYSIS OF GRAPH MINING

Phase
Fu

lly
de

co
m

po
se

d
Se

m
id

ec
om

po
se

d
M

on
ol

ith
ic

St
ra
te
gy

Candidate generation Positive constraint No isomorphism constraint

Template IDP IDP

Ex1 Ex2

Ex3

Pattern

Clauses

Template

IDP IDP IDP

Ex1 Ex2

Ex3

Candidate Pattern

Clauses

Invalid

Template

IDP IDP
IDP

IDP
IDPAgg

Ex1
Ex2

Ex3

Candidate Pattern

Clauses

Invalid

Figure 3.9: The three different strategies proposed for subsolvers.

• The semi decomposed approach splits the theory on the outermost
quantification for any rule containing any second-order quantification.

As it is possible that after splitting, the theory being split off still contains
formulas with second-order quantifications, the splitting rules must be performed
recursively.

Experiments: To get an idea of the performance of the nested solvers technique,
and whether it might lead to some performance gains, we mimicked the
implementation of a nested solver, without implementing a fully functional
nested solver. By introducing a ‘pipeline’ of separate IDP3 call instances, our
implementation replicates the different oracle calls in the nested solver approach,
while being specifically tailored to graph mining. It uses an imperative language
to manage the different calls and modify the modelsMψ of oracle calls to new
clauses Cψ added to subsequent calls.

For each strategy proposed above, we have introduced a corresponding ‘pipeline’

SOLVER TECHNIQUES 55

in the experiments. The experiment is set up such that every pipeline mines
a certain amount of patterns from a dataset. Like most imperative solutions,
they do this in a fixed order: first patterns of length n are mined, starting with
n = 2, raising the length of the mined patterns to n+ 1 whenever all patterns of
length n are mined. This fixed order allows exploitation of an anti-monotonicity
property often used by imperative solutions: Whenever a pattern candidate fails
the positive homomorphism check, every extension of this pattern candidate will
also fail the positive homomorphism constraint.

This property can easily be encoded as additional knowledge in a higher-order
specification of the graph mining problem, as it defines a predicate isPattern

/1 representing whether or not a graph G is a pattern. When we look at the
proposed strategies, both the semi and fully decomposed pipeline capture the
necessary information for exploiting the anti-monotonicity property: they signal
both the valid as well as the invalid pattern candidates through the imperative
interface managing the different oracle calls. However, the monolithic pipeline
does not; invalid pattern candidates are discarded internally in the solver
instance handling candidate generation and the positive constraint. As a result,
the invalid pattern candidates of length n cannot be used by the monolithic
pipeline to additionally filter the candidate generation when it starts searching
for patterns of length n + 1. As a result, the monolithic pipeline does not
exploit the anti-monotonicity property, but also does not impose a search
direction, which can become an advantage for certain datasets.

Dataset generation & specifications: To test the performance of all three
pipelines, we have reused the yoshida dataset from Section 3.5.4, and have
modified the mutagenesis dataset by labeling all molecules as positive. This
modification is motivated by two key insights:

1. Specialized algorithms do not feature negative examples,

2. When splitting the model into multiple theories solved by separate oracles,
the theory for negative examples is the same as that for the positive
examples. The only difference is how the satisfiability results are handled:
for negative examples, an UNSAT is handled as a SAT for the positive
examples and vice versa.

Lastly, we have also created a graph mining problem from the well known
bloodbarr dataset [99], where 413 molecules are ranked according to the degree
to which the molecule can cross the blood-barrier stream.

We have reused the approach described in Section 3.5.4, and ran experiments
using the same machine and time/memory limits.

56 ANALYSIS OF GRAPH MINING

Results: Figure 3.10 shows the resulting cumulative runtimes for each of the
pipelines on a log-scale y-axis, and a boxplot of the time spent mining each
pattern for the fully decomposed and the semi decomposed pipelines. Our
boxes cover the data from the first quartile (Q1) to the third quartile (Q3),
while the whiskers extend to the last datum less than Q3 plus 1.5 times the
interquartile range (IQR). All other data points are considered outliers, and are
plotted as individual dots. A horizontal dotted line indicates the median. For
the Bloodbarr datasets, no results for the monolithic pipeline could be given,
as it exceeded the memory limit of 8GB.

Focussing on the difference between the semi and fully decomposed pipelines,
all three datasets (Figure 3.10b) show a similar factor of two difference in
favor of the fully decomposed pipeline. The difference between the pipelines
that use oracles for the positive constraint on the one hand (the semi and
fully decomposed pipelines), and the monolithic pipeline on the other hand,
suggests that a large benefit can be achieved from using a separate oracle for
the checking phase.

Furthermore, the difference between the semi and fully decomposed pipelines
shows that the benefit of introducing oracles, at least in graph mining, increases
when we further introduce an oracle call for each independent graph. Recall
that the possibilities for decomposition in the graph mining case are found
by syntactical analysis; they correspond to second-order quantifications, and
their position in the hierarchy relative to each other and other, first-order
quantifications. In fact, this is why we advocate the use of local quantifications,
as opposed to having to quantify all second-order symbols in the vocabulary.
This syntactical argument suggests that finding good decompositions for other
problems based on the presence of second-order quantifications is feasible.

In fact, the semi and fully decomposed strategies can mine 120 patterns from
the yoshida dataset in 1633 and 1255 seconds respectively. Likewise, for the
mutagenesis dataset, these strategies mine the 120 requested patterns in 1996
and 939 seconds respectively. While this is still an order of magnitude larger
than ASP, we note that in these experiments we focussed on how many oracles
should be introduced and where, and as a result, IDP must still repeatedly
ground each theory.

3.6.2 Lazy Grounding

The third issue with higher-order encodings, as pointed out in Section 3.5,
concerns the data representation of sets of higher-order objects, such as graphs
in the graph mining problem. While the disjoint union technique proposed in
Section 3.5 can be used, even automating the rewrite so it is no hinderance

SOLVER TECHNIQUES 57

0 20 40 60 80 100 120
pattern #

101

102

103

se
co

nd
s

Cumulative time [Bloodbarr].
Fully Decomposed
Semi Decomposed

Fully Decomposed Semi Decomposed
0

25

50

75

100

125

150

175

200
Time needed for the next pattern.

(a) IDP results for the bloodbarr dataset, with N+=41.

0 20 40 60 80 100 120
pattern #

101

102

103

104

se
co

nd
s

Cumulative time [Mutagenesis].

Fully Decomposed
Semi Decomposed
Monolithic

Fully Decomposed Semi Decomposed
0

10

20

30

40

50

Time needed for the next pattern.

(b) IDP results for the mutagenesis dataset, with N+=23.

0 20 40 60 80 100 120
pattern #

101

102

103

104

se
co

nd
s

Cumulative time [Yoshida].
Fully Decomposed
Semi Decomposed
Monolithic

Fully Decomposed Semi Decomposed
0

10

20

30

40

50
Time needed for the next pattern.

(c) IDP results for the yoshida dataset, with N+=26.

Figure 3.10: Cumulative runtimes and time spent per pattern by IDP for the
three datasets with only positive examples.

58 ANALYSIS OF GRAPH MINING

for modellers, one problem is that it tends to produce very large groundings.
Furthermore, the earlier introduced nested solvers technique results in a system
that has to ground not just the main theory, but also has to ground theories for
every nested solver, while retaining as many grounding optimization techniques
as possible. This problem could be mitigated by using the lazy grounding
technique.

Lazy grounding is a technique where theories are only grounded partially: only
those parts of the theory that are relevant to finding a satisfying assignment
are grounded. The framework of de Cat et al. [38], for example, uses the
concept of justifications to denote a way of generating a complete assignment
for non-grounded parts of the theory. It then suffices to ground parts only if it
is not possible to construct a justification for them anymore. An experimental
algorithm for model expansion with lazy grounding based on this framework
has been implemented in IDP.

Experiments: To get an indication of the impact of lazy grounding, we repeated
the experiments explained above while enabling lazy grounding for every IDP
call covering the ‘positive constraint checking’ phase. Note that in this case, the
disjoint union technique has already been applied manually. This would allow
the solver to defer the grounding of example graphs until they are necessary
to satisfy the positive constraint. In the ‘Ground and solve’ setup, the fully
decomposed pipeline is able to prevent grounding and solving some example
graphs by eagerly evaluating the aggregation and stopping as soon as the
threshold is reached, giving it a clear advantage over the semi decomposed
pipeline, which has to ground the entire problem first. When using lazy
grounding, we expect the semi decomposed pipeline to behave more like the
fully decomposed pipeline, as it should be able to bypass any grounding for
unnecessary graphs.

Results: Figure 3.11 shows for each dataset a histogram of the time needed
to mine the next pattern for the semi decomposed and fully decomposed
pipelines with ground and search, and the semi decomposed pipeline with
lazy grounding. These figures show that the lazy grounding option actually
causes a slowdown for the semi decomposed pipeline, quite frequently needing
significantly more time to check a pattern, as evidenced by the long tail of the
semi decomposed pipeline with lazy grounding. Figure 3.12 shows, for the
mutagenesis dataset, the size of grounding as the number of literals (3.12a) and
the memory usage of the semi decomposed pipeline in kilobytes with and
without lazy grounding (3.12b). While Figure 3.12a shows that lazy grounding
produces smaller groundings, Figure 3.12b shows that the effective memory

DISCUSSION AND FUTURE WORK 59

usage using lazy grounding, while in general smaller, sometimes exceeds that of
the default ground & solve option.

One possible cause for the apparent slowdown caused by the lazy grounding
option is the setup cost of lazy grounding, which can be high: When using lazy
grounding, additional data structures are required. Another possible factor is
the ‘penalty’ incurred in the experimental implementation when lazy grounding
has to ground an additional graph, w.r.t eagerly grounding all patterns at the
same time. Further evidence for this factor can be found by noting that the
slowdown with lazy grounding is less dramatic for the mutagenesis and yoshida
datasets. From Figure 3.13, which shows a boxplot of the number of example
graphs that had to be inspected before accepting or refuting a pattern candidate
for each dataset4, we can conclude that these datasets are in some sense ‘easier’,
as the fully decomposed pipeline on average has to inspect fewer graphs per
pattern candidate for these datasets than for the bloodbarr dataset.

3.7 Discussion and Future Work

Looking at the limitations and shortcomings of the typical techniques to encode
higher-order logic in KR systems such as IDP and ASP, e.g., disjoint union
technique and saturation, we see opportunities for adding support for higher-
order logic to state-of-the-art KR systems.

While the expressiveness of higher-order logic in general raises concerns about
the performance of systems supporting higher-order logic, we suggested that in
real-world applications, higher-order logic might open up new ways for solvers
to benefit from structure in problems, for example, through independence
analysis. To investigate this trade-off, in Section 3.6, we experimented with
two techniques for adding higher-order logic support to KR systems, while paying
attention to how they might aid such independence analysis: The first technique,
nested solvers, was concerned with supporting universal quantification and local
quantifications of higher-order objects, while the second, lazy grounding, was
mainly concerned with issues surrounding data representation.

For nested solvers we experimented with an implementation in imperative code
that should mimic nested solvers in two different settings (fully decomposed
and semi decomposed) and have found that both settings hold a clear
advantage over the first-order monolithic setting.

For lazy grounding we experimented with its existing experimental
implementation in IDP, turning it on for the semi decomposed setting. While

4Numbers taken from runs of the fully decomposed pipeline.

60 ANALYSIS OF GRAPH MINING

0

50
Semi Decomposed Ground & Solve

0

50
Fully Decomposed Ground & Solve

0 100 200 300 400 500 600 700 800
0

50
Semi Decomposed Lazy Grounding

Time needed for the next pattern: bloodbarr

(a) Lazy grounding effects for IDP on the bloodbarr dataset, with
N+=41.

0

50

100
Semi Decomposed Ground & Solve

0

50

100
Fully Decomposed Ground & Solve

0 100 200 300 400 500 600 700 800
0

50

100
Semi Decomposed Lazy Grounding

Time needed for the next pattern: mutagenesis

(b) Lazy grounding effects for IDP on the mutagenesis dataset,
made strictly positive, with N+=23.

0

50

Semi Decomposed Ground & Solve

0

50

Fully Decomposed Ground & Solve

0 100 200 300 400 500 600 700 800
0

50

Semi Decomposed Lazy Grounding

Time needed for the next pattern: yoshida

(c) Lazy grounding effects for IDP on the yoshida dataset, with
N+=26.

Figure 3.11: Histograms of time needed to mine the next pattern by IDP. Only
strictly positive datasets were used.

DISCUSSION AND FUTURE WORK 61

0 20 40 60 80 100 120
104

105

106

Grounding size Mutagenesis (# literals).

Semi Decomposed + Ground & Solve
Semi Decomposed + Lazy Grounding
Fully Decomposed + Ground & Solve

(a) Grounding size for pattern check in
Mutagenesis dataset, as number of literals.

0 20 40 60 80 100 120

105

2 × 105

3 × 105

Memory usage Mutagenesis (kilobytes).

Semi Decomposed + Ground & Solve
Semi Decomposed + Lazy Grounding

(b) Memory usage for pattern check in
Mutagenesis dataset, in kilobytes.

Figure 3.12: Grounding size (#lits) and memory usage (kilobytes) of Ground &
Solve and Lazy Grounding approaches in Mutagenesis dataset.

yoshida bloodbarr mutagenesis

50

100

150

200

250

300

350

400

of graphs inspected for pattern

Figure 3.13: Boxplot: # of example graphs inspected before accepting or
refuting a pattern candidate.

62 ANALYSIS OF GRAPH MINING

we had thought that lazy grounding would bring the semi decomposed setting
closer to the fully decomposed setting, we actually found that, in its current
implementation, lazy grounding actually causes a slowdown.

It is clear that more research with respect to existing techniques and systems
is needed. Thus, we identify three potential paths for going forward: (1) we
build upon the idea of nested solvers, implementing syntax based decomposition
techniques introducing stacks of subsolvers automatically, not only for graph
mining but for other higher-order logic specifications as well, (2) we ground
to quantified Boolean formulas (QBF) as an alternative approach to nested
solvers, and/or (3) we further explore lazy grounding. These last two paths are
discussed in more detail.

3.7.1 Grounding to QBF

Existing state-of-the-art KR systems are commonly based on SAT solvers. One
other option to introduce higher-order support is by using Quantified Boolean
Formula or QBF solvers instead.

These solvers accept formulas of the form

∀x1∃x2∀x3 . . . Qnxn : φ(x1, x2, x3, . . . , xn)

where ∀x1∃x2∀x3 . . . Qnxn is called the quantifier prefix and φ(x1, x2, x3, . . . , xn)
represents an unquantified Boolean formula. To test the performance of a KR-
system based on a QBF solver, we would first implement a grounding system
from higher-order expressions to QBF formulas, making use of the fact that
we can ground quantification over a predicate by quantifying over the ground
atoms representing the predicate.

We can then use existing QBF solvers to solve the resulting ground formulas.
By employing a solver which uses a dependency learning technique [116], it is
possible to solve these formulas by assigning atoms a value without taking into
account their order in the quantifier prefix.

Such a system can derive a set of independencies using the same syntactical
analysis of the higher-order specification proposed earlier. Then, instead of
starting with the empty set, these derived dependencies can be used to bootstrap
a QBF solver supporting dependency learning [116] (e.g., DepQBF).This way,
we can again leverage additional independencies evident in the higher-order
specification while possibly deriving more, perhaps otherwise unidentified
dependencies on the propositional level.

CONCLUSION 63

3.7.2 Lazy Grounding

As mentioned in Section 3.6.2, we expected that enabling lazy grounding for
the semi decomposed pipeline would prevent the grounding and solving of
some of the example graphs, and that, as a result, the semi decomposed
pipeline would achieve results very close to the fully decomposed pipeline.
Instead, our experiments showed an overall slowdown of the semi decomposed
pipeline when using lazy grounding. Possible explanations are a high setup cost
for the general method of lazy grounding or a high penalty being incurred every
time an additional graph has to be grounded.

Metrics such as the ‘hardness’ of each dataset, which expresses how many
example graphs on average are needed to accept or refute a pattern candidate,
can give some indication towards the cause of the overall slowdown. However,
for a detailed analysis changes to both the experiments as well as the lazy
grounding implementation are needed.

It is important to note that other approaches exist to implement lazy
grounding [32, 141] in ASP, for example lazy constraints, where a set of
constraints C is identified which causes large grounding. This set C is not
grounded, instead, a solution candidate is generated without it and this solution
candidate is subsequently checked w.r.t. the constraints in C. If any of the
constraints in C is violated, a (ground) conflict is learned. We remark that
this is similar to the way that the semi and fully decomposed pipelines split
candidate generation from checking the positive (and negative) constraints. As
such, we would expect that a good implementation of this technique would
indeed show similar performance gains as the introduction of these pipelines,
without the need of procedural code, and this can be the target of future
research.

3.8 Conclusion

In this chapter, we introduced the Graph Mining, and showed that there is a
straightforward transformation from its mathematical definition (Section 3.3)
into a higher-order specification (Section 3.4).

We subsequently looked at how IDP and ASP, two state-of-the-art KR Languages
allow one to model the graph mining problem, employing techniques such as
disjoint union technique to encode higher-order predicates, and, in the case of
ASP, saturation technique to encode second-order quantifications. Most notably,
the fact that second-order quantification cannot be encoded in IDP stands at
odds with its underlying knowledge base paradigm, as we must write procedural

64 ANALYSIS OF GRAPH MINING

code to perform multiple solver calls, which fixes the flow of information and
the inference(s) used.

We then set up an experiment (Section 3.6) to investigate the hypothesis that
the expressiveness of higher-order logic can actually be of benefit to solvers by
allowing independence analysis, looking at different ways in which an approach
based on nested solvers could decompose the search problem.

Lastly, we suggest two future lines of research, one based on Lazy Grounding as a
way to minimize the grounding for quantifications over elements of a higher-order
predicate, encoded through the disjoint union technique, the other focussed on
grounding to QBF as an alternative for nested solvers, to support second-order
quantifications. It is the latter line of research that we will investigate further
in Chapter 4.

Chapter 4

A Second-Order Language
and its Grounder

This chapter is a reworked version of a publication in the proceedings of the
“Sixteenth International Conference on Principles of Knowledge Representation
and Reasoning” [133]. Some modifications in spelling and presentation were
made, some terminology was adjusted to be in line with the remainder of this
thesis, and small errors were corrected.

Personal contribution: 100%.

4.1 Introduction and Related Work

In the spirit of Kowalski’s seminal paper Predicate Logic as a Programming
Language [93, 136], many KR languages are based on logic: some are
propositional, some First-Order. In recent years, ASP has clearly shown the
applicability of modeling problems in logic and handing them to a solver on real-
world business use cases, for example, planning robot tasks in warehouses [62].

Yet, there is a demand for more powerful and richer KR languages. To this
end, we propose Second-Order (SO) Logic as a modeling language. SO Logic
allows many more problems to be expressed than ASP, FOL or propositional
logic; it has a descriptive complexity of PH [80]. SAT and ground (disjunctive)
ASP however have a descriptive complexity of NP and ΣP

2 respectively. As
such, it is infeasible to ground SO to SAT or ground (disjunctive) ASP. Instead,

65

66 A SECOND-ORDER LANGUAGE AND ITS GROUNDER

we propose to ground to Quantified Boolean Formulas (QBF), which have a
descriptive complexity of PSPACE.

To our knowledge, the only other ground-and-solve tool with SO as a modeling
language is SAT-to-SAT [17] and its grounder so2grounder. Our system
improves on SAT-to-SAT by:

• Lifting a syntactical restriction: after the first FO quantification Qx,
so2grounder no longer allows SO quantifications of a different quantifier.

• Interfacing with arbitrary QBF solvers using the widely accepted QDimacs
format.

In Constraint Programming (CP) languages, we find the ESSENCE [56]
language, which features an expressive type system that allows for arbitrary
nestings of sets and supports quantifications. Analysis by Mitchell and
Ternovska [108] suggests that the ESSENCE language effectively has a
descriptive complexity of at least ELEMENTARY, although they remark that
no complete formal semantics for the language have been published. Contrary
to our solver, however, ESSENCE modelings distinctively specify the direction
in which reasoning is performed, e.g., when expressing reachability in a graph,
the model depends on whether one wants to find the reachability relation or
whether one wants to generate so-called connected graphs.

Lastly, there are formal specification languages such as TLA [97] and Event-B [3].
These languages extend predicate logic with set theory, allowing for higher-order
quantifications. The ProB [98] system, implemented in SICSTus Prolog is
a constraint solver and model checker for the Event-B language. Generally,
these higher-order quantifications and features are handled by ProB’s default
Constraint Logic Programming (CLP) backend, with only limited involvement
of its SAT backend Kodkod [132], potentially missing out on recent performance
improvements of SAT technology. However, in recent work, Krings et al. [95]
have reported promising results in a first attempt towards integrating the SAT
and CLP backends.

4.2 Second-Order Logic

In this section we introduce SO logic over a vocabulary V , and show how we
intend to use it as a modeling language.

SECOND-ORDER LOGIC 67

4.2.1 Syntax

Variables are symbols representing either an element, a predicate P/n, or a
function f/n. We call n the arity of the predicate or function.
When a variable represents an element, we call it a first-order (FO)
variable. Variables representing either a predicate or a function are called
second-order (SO) variables.

Terms are either a variable, the application of an n-ary function symbol f or
a variable representing a function to n terms, or a predicate symbol P/n
or function symbol f/n.

Atoms are n-ary predicate symbols P or variables representing a predicate
applied to n terms.

Formulas are defined inductively using the following rules:
• All atoms are formulas.
• The negation (¬) of a formula is a formula.
• If φ and ψ are formulas, the conjunction (∧), disjunction (∨),

implication (⇒) and equivalence (⇔) of φ and ψ are formulas, with
φ ⇒ ψ and φ ⇔ ψ shorthand for ¬φ ∨ ψ and (¬φ ∨ ψ) ∧ (φ ∨ ¬ψ)
respectively.

• If x is a variable, and φ is a formula, then ∃x : φ and ∀x : φ
are formulas, with ∀x : φ shorthand for ¬∃x : ¬φ. Note that no
restrictions are imposed on whether x is a first-order or second-order
variable.

• The pre-interpreted symbols =,6=,<, and ≤ applied to two terms are
formulas.

An example of a second-order formula is ∃f : ∀x : ∀y : x 6= y ⇒ f(x) 6= f(y),
where 6= (and =) is a pre-interpreted predicate.

For modeling convenience, and to distinguish first-order from second-order
variables, we introduce types to second-order logic. Predicates and functions are
associated with types (T1, . . . , Tn) and T1, . . . , Tn → T respectively. Variables
are typed corresponding to the symbol they represent, and we write x :: T to
mean x is typed as T.

Note that a first-order quantification over an element x of type T is written as
∀x :: T , while a second-order quantification over a predicate P of elements from
T is written as ∀P :: (T), the difference being the parentheses surrounding T .

We say a formula is properly typed if all of its subformulas are properly
typed. An application of a predicate p (function f) is properly typed if the

68 A SECOND-ORDER LANGUAGE AND ITS GROUNDER

predicate (function) has type (T1, . . . , Tn) (for functions, T1, . . . , Tn → T)
and its arguments x1 to xn have types T1 to Tn. With typing, we could
introduce the types Color and Country, and the above example formula becomes:
∃f :: Country → Color : ∀x :: Country : ∀y :: Country : x 6= y ⇒ f(x) 6= f(y).

4.2.2 Semantics

To define the semantics of second-order logic, we extend interpretations I.

Specifically, a structure I for second-order logic must be extended with:

• an assignment of an n-ary relation over the domain for every n-ary
predicate (and thus, second-order) variable, and

• an assignment of a total n-ary function over the domain for every n-ary
function variable.

Furthermore, now that types are introduced, the assignments by I must respect
the type of every symbol and variable.

The valuation function (·)I for terms t is extended for function variables applied
to terms:

• If t is a function variable f of arity n applied to n terms t1, . . . , tn then
tI = fI(tI1 , . . . , tIn).

The satisfaction relation |= between structures I and formulas φ is modified as
well.

Definition 15. Given a formula φ and a structure I, we define the satisfaction
relation inductively based on the syntactical structure of φ:

• I |= P (t1, . . . , tn) where P is an n-ary predicate symbol or predicate
variable iff (tI1 , . . . , tIn) ∈ P I .

• I |= ¬φ iff I 6|= φ.
• I |= φ ∧ ψ iff I |= φ and I |= ψ.
• I |= φ ∨ ψ iff I |= φ or I |= ψ (possibly both).
• I |= ∃x :: T : φ iff

1. T is a basic type and there is a d ∈ dom(I) of type T s.t. I[x : d] |= φ,
or

2. T is a predicate type with arity n and there is an n-ary relation r
over dom(I) of type T s.t. I[x : r] |= φ, or

3. T is a function type with arity n and there is an n-ary function f
over dom(I) of type T s.t. I[x : f] |= φ.

• I |= t1 = t2 iff t1
I = t2

I .

SECOND-ORDER LOGIC 69

• I |= t1 < t2 iff t1
I < t2

I where the ordering < on the domain dom(I)
is extended pointwise to functions over dom(I) and expresses the subset
relationship for relations over dom(I).

4.2.3 SO Logic as a Modeling Language

Every Second-Order Logic modeling consists of three main parts: The vocabulary,
the structure and the theory.

Vocabulary The vocabulary declares the types used in the modeling, and can
declare predicates and functions. If these predicates or functions are not
subsequently defined in the structure, they are understood to be implicitly
quantified existentially on the outermost level, being in scope for the
entire theory. Types can be declared to be a subset of the integers using
the syntax “as int”. The type Bool is added automatically to represent
propositions.

Structure The structure assigns to each type T a domain D, and can interpret
certain predicates and functions that were declared in the vocabulary. As
such, it is the perfect place to put instance-specific information. Currently,
only two-valued structures are allowed, i.e., a structure must always fully
specify which tuples are true/false for the predicates and functions it
interprets.

Theory The theory consists of a set of properly typed SO formulas with no
free (unquantified) variables. We call these formulas sentences. A theory
is satisfied iff every sentence in the theory is satisfied.

By including the type of integers in every structure, and extending the vocabulary
with (in some cases, partial) functions representing +, −, ∗, and /, we include
support for arithmetic functions. We furthermore extend the vocabulary with
constants for every integer, and fix the interpretations of these constants and
the earlier introduced partial functions to their standard interpretations.

Example 1 (Strategic Companies). The Strategic companies problem is a
well-known example of a ΣP

2 -hard [24] problem. It models the conundrum of
a large holding owning multiple companies, forced to downsize by selling off a
company. Of course, the company wants to minimize the impact of selling this
company. Specifically, two conditions have to be met:

1. The sale should not impact the holdings portfolio, i.e., it should produce
the same set of goods.

70 A SECOND-ORDER LANGUAGE AND ITS GROUNDER

2. Some sets of companies in the holding together control another company,
this is called a controlling set. As such, it is possible to sell off a company
while retaining control of it through a controlling set. In this case, the
holding is not allowed to ‘downsize’ by selling this company.

Definition 16 (Strategic set). We call a set of companies SC controlled by
the holding a strategic set if (1) the companies in SC together produce all goods,
(2) SC is closed under ownership through controlling sets, and (3) none of its
subsets Y ⊂ SC satisfies both condition (1) and condition (2).

The Strategic Companies problem was featured in the ASP Competition 2013 [77],
where the challenge was to determine for two distinct companies c, c′ whether a
strategic set SS exists containing both c and c′. A pair of companies satisfying
this requirement was called a strategic pair.

Some aspects of higher-order logic arise when modeling the strategic companies
problem, specifically when choosing how to represent controlling sets. While this
could be encoded using a tagged union approach, in the ASP competition the
additional restriction that “every controlling set contains at most 4 companies”
was imposed instead.

We model the Strategic Companies in Listing 4.1. We impose the same
restriction as the ASP competition to allow a more direct comparison with ASP
specifications. In Lines 1–6 we specify the vocabulary, containing the Company

and Good types together with predicates to represent the controlling sets (cont),
who produces what (prod), the strategic set (ss) and the strategic pair (sp).
Lines 8–12 continue by specifying the structure, which contains instance specific
data. We conclude with Lines 14–17, specifying the theory: The strategic set
must contain the strategic pair (Line 14), it must produce all goods (Line 15),
be closed under ownership through controlling sets (Line 16) and it must be
subset-minimal (Line 17): no strict subset of ss must exist for which conditions
(1) and (2) hold. Note that this model contains two second-order quantifications:
∃ss (implicitly) in the vocabulary and ¬∃ss’ on Line 17.

4.3 QBF

A quantified boolean formula (QBF) is a formula in quantified propositional
logic where variables can be quantified either existentially or universally, e.g.

∀x : ∃y : (x ∨ y ⇒ ∃z : y ∨ z).

IMPLEMENTATION 71

Listing 4.1: SO model for Strategic Companies.
1 type Company. // All companies
2 type Good. // All products
3 cont :: (Company, Company, Company, Company, Company). // Controls: last is

controlled
4 prod :: (Company, Good). // Produces
5 ss :: (Company). // Strategic Set
6 sp :: (Company, Company). // Strategic pairs

8 Company := {Barilla;Dececco;Callippo;Star}.
9 Good := {Pasta;Tonno}.

10 prod := {Barilla,Pasta; Dececco,Pasta; Callippo,Tonno; Star,Tonno}.
11 cont := {Star,Star,Star,Star,Barilla; Barilla,Barilla,Barilla,Barilla,Dececco}.
12 sp := {Barilla,Callippo}.

14 ∀c :: Company : ∀c1 :: Company : sp(c,c1) ⇒ (ss(c) ∧ ss(c1)).
15 ∀g :: Good : ∃p :: Company : ss(p) ∧ prod(p, g).
16 ∀c :: Company : (∃o1 :: Company : ∃o2 :: Company : ∃o3 :: Company : ∃o4 :: Company : ss(

o1) ∧ ss(o2) ∧ ss(o3) ∧ ss(o4) ∧ cont(o1,o2,o3,o4,c)) ⇒ ss(c).
17 ¬(∃ss' :: (Company) : (ss' 6= ss) ∧ (∀c :: Company : ss'(c) ⇒ ss(c)) ∧ (∀g :: Good : ∃p

 :: Company : ss'(p) ∧ prod(p, g)) ∧ (∀c :: Company : (∃o1 :: Company : ∃o2 ::
Company : ∃o3 :: Company : ∃o4 :: Company : ss'(o1) ∧ ss'(o2) ∧ ss'(o3) ∧ ss'(o4)
∧ cont(o1,o2,o3,o4,c)) ⇒ ss'(c))).

Quantifiers can alternate indefinitely and it is this property that makes deciding
satisfiability for QBF PSPACE-complete, whereas deciding satisfiability for
(unquantified) SAT formulas is NP-complete.

When each variable is quantified at the beginning of the formula, we say that it is
in prenex form. Such formulas can be written as Q1x1 . . .Qnxn.φ with Q1,Qn
quantifiers. We generally call Q1x1 . . .Qnxn the quantifier prefix, also written
Q̂ . We group subsequent quantifications of the same quantifier into quantifier
blocks and define the level(Qi) of a block Qi to be the number of quantifier
blocks preceding it. As such, the highest level or innermost quantification block
is the one most to the right in the formula.

When the formula φ in Q̂.φ is in Conjunctive Normal Form (CNF) we say the
QBF formula is in Prenex Conjunctive Normal Form (PCNF). QDimacs, the
input encoding that most QBF solvers accept, is in fact a textual representation
of a QBF formula in PCNF.

4.4 Implementation

We now discuss the implementation of a grounder from SO to QBF. We now
describe our initial approach by listing, in order, the transformations φ ψ,
implemented in the system as rewritings:

72 A SECOND-ORDER LANGUAGE AND ITS GROUNDER

Push Negations Using the rules ¬∃x.φ ∀x.¬φ, ¬(φ ∧ ψ) ¬φ ∨ ¬ψ, etc.
we ensure that negations only appear in front of atoms.

Unnesting Using the rule f(g(x)) = z ∃y.f(y) = z ∧ g(x) = y, we remove
function applications from positions where terms are expected.

Second-order Comparisons and (In)equalities We rewrite comparisons
(<, ≤) and (in)equalities (=, 6=) over second-order variables to equivalent
first-order formulas, e.g., P = Q ∀xP (x) ⇔ Q(x). Specifically,
comparisons <, ≤ are extended pointwise for function symbols and express
(strict) subset for predicate symbols.

Graphing Using the following three rules:

f(x) = y f ′(x, y) (4.1)

∃f :: T1, . . . , Tn → T : φ ∃f ′ :: (T1, . . . , Tn) : F (f ′) ∧ φ (4.2)

∀f :: T1, . . . , Tn → T : φ ∀f ′ :: (T1, . . . , Tn, T) : F (f ′)⇒ φ (4.3)

where F (f ′) ≡ ∀x : ∃y : f ′(x, y) ∧ ∀y′ : (f ′(x, y′)⇒ y = y′), we transform
functions f/n of type T1, . . . , Tn → T into predicates f ′/n + 1 with
existence and uniqueness constraints.

Normalization Using the rules φ⇒ ψ ¬φ∨ψ, φ⇔ ψ (¬ψ∨φ)∧(¬ψ∨φ)
and φ⇔ ψ (φ∧ψ)∨(¬φ∧¬ψ), we eliminate⇒,⇔. We choose between
the two rules for equivalences based on the type of the enclosing connective.

FO Grounding Using the rule ∃(∀)x :: T : φ
∨
t∈D(

∧
t∈D) : φ[x/t] with x

an FO variable with type T where T has domain D, we instantiate all
first order quantifications.

First-Order (In)equalities and Arithmetic Following the FO grounding
step, all variables have been instantiated. Therefore, all arithmetic
functions, (in)equalities and comparisons can be evaluated as usual.

Unique Names We introduce unique names for every remaining (SO)
quantification, e.g., ∀f :: (T) : φ ∧ ∃f :: (T) : ∀g :: (T) : f(x) ∨ ψ ∀f ::
(T) : φ ∧ ∃f ′ :: (T) : ∀g :: (T) : f ′(x) ∨ ψ[f/f ′]1.

Prenex Form We pull all SO quantifiers to the front by applying the following
two rules. Note that these rules only hold when variable α does not
appear in ψ, a condition we have preemptively satisfied due to theUnique

1We use the notation φ[x/x′] to mean φ where all occurrences of x are substituted by x′.

IMPLEMENTATION 73

Names transformation and the restriction of sentences to properly typed
SO formulas with no free variables.

(∃α :: T : φ) ∧ (∨)ψ ∃α :: T : φ ∧ (∨)ψ (1∃)

(∀α :: T : φ) ∧ (∨)ψ ∀α :: T : φ ∧ (∨)ψ (2∀)

To minimize the number of quantifier alternations, we switch between
applying rule (1∃) and rule (2∀) only when we cannot further apply the
active rule.
Consider the formula ∀a :: (T) : (∃b :: (T) : ∃c :: (T) : (φ ∨ ∀d :: (T) :
ψ)) ∧ (∀e :: (T) : φ′ ∨ ∀f :: (T) : ∃g :: (T) : ψ′). This formula becomes
∀a, e, f :: (T) : ∃b, c, g :: (T) : ∀d :: (T) : (φ ∨ ψ) ∧ (φ′ ∨ ψ′), as visualized
below (types dropped for readability).
Note how ∀e :: (T) and ∀f :: (T) are pulled to the level of
∀a :: (T) by rule (2∀), whereas ∀d :: (T) is blocked from being
pulled to that level by the quantifications ∃b :: (T) and ∃c :: (T),
as no rule allows switching the order of ∀ and ∃ quantifications.

∀a
∃b∃c

∀d : ψ
∀e

∀f
∃g : ψ′

∧
∨ ∨φ φ′

Tseitinize The resulting prenex formula must be flattened to Prenex
Conjunctive Normal Form (PCNF). We can do this by introducing a
so called Tseitin variable for every nested subformula, e.g.: Q1x : Q2y :
φ∧ (ψ ∨ (χ∧ ρ)) Q1x : Q2y : φ∧ ∃Ti :: Bool : (ψ ∨ Ti)∧ (Ti ⇔ (χ∧ ρ)).
After pulling the existential quantification of the Tseitin variables to the
front and rewriting the equivalences using the Normalization rule, we
obtain PCNF.

Grounding SO We replace every predicate atom p(t) with a proposition pt
and quantifications ∀(∃)p with quantifications ∀(∃)pt0 , . . . ,∀(∃)ptn with
ti in the domain Dp of p, e.g., ∀p : φ ∧ p(1) with the domain Dp={1, 2}
would become ∀p1 : ∀p2 : φ[p(1)/p1, p(2)/p2] ∧ p1.

Complexity of Grounding

Recalling the result that second-order logic captures the Polynomial Hierarchy
PH, we know that every second-order logic formula can be placed on a specific
level of the hierarchy. We now discuss how the grounding procedure sketched

74 A SECOND-ORDER LANGUAGE AND ITS GROUNDER

above influences the number of quantifier alternations in the resulting k-QBF.
For any modeling M in second-order logic, we can compute the maximum
number of second-order quantifier alternations #alt(M), keeping in mind that
all second-order symbols in the vocabulary are quantified existentially. From the
grounding procedure sketched above, we can conclude that any modeling M is
transformed to a k-QBF where k is #alt(M) if #alt(M) is even, and #alt(M)+1
if it is odd. Specifically, the Tseitin transformation from arbitrary second-order
formulas to prenex-form can introduce new existentially quantified variables
at the innermost level, potentially incrementing the number of alternations by
one.

4.4.1 Advanced grounding techniques

In this section we will detail some improvements on the grounding process
sketched above.

In the grounding process above, our FO Grounding transformation grounds
every formula. However, when we know the truth value of certain (sub)formulas
such as predicate atoms p(x), we can replace the (sub)formula by the truth
value and propagate this, instead of grounding the (known) formula. This
improvement is known as Reduced Grounding or RED [37]. Although this is a
simple technique based on substitution and simplification, it can be powerful.
This technique is implemented on top of the grounding process above by
SOGrounder.

Grounding With Bounds [143], or GWB, further improves upon RED by
maintaining a symbolic representation for every formula in the theory, e.g.,
using Binary Decision Diagrams or BDDs. These symbolic representations allow
for querying the instances which are known to be true (false), known as the
CT (CF) bound of the formula. With this knowledge, when grounding for
example a universal quantifier, we only need to introduce ground formulas for
instances which are not known to be true, i.e., instances not in CT. Although
SOGrounder does not support this improvement, it allows users to specify a
generating formula for (a set of) quantifications by hand. We call this language
construct the binary quantification, as it introduces a quantification taking
two formulas; one formula generating variable instantiations and one being
instantiated. E.g., after extending the syntax so that the generating formula
takes the place of the type information, ∀ x, y ::[graph(x,y)]:φ instantiates
φ only for those x,y for which graph holds. Note that the types of x,y can be
derived from the type of graph. For strategic companies, this can simplify the
nested quantification of o1, o2, o3, and o4 to a single binary quantification, as
shown in Listing 4.2 on Line 16.

IMPLEMENTATION 75

Listing 4.2: SO model for Strategic Companies using binary quantifications, for
example Line 14.

1 type Company.
2 type Good.
3 controlledBy :: (Company, Company, Company, Company, Company).
4 produces :: (Company, Good).
5 strategicset :: (Company).
6 non_strat_pair :: (Company, Company).

8 Company := {Barilla;Dececco;Callippo;Star}.
9 Good := {Pasta;Tonno}.

10 produces := {Barilla,Pasta; Dececco,Pasta; Callippo,Tonno; Star,Tonno}.
11 controlledBy := {Star, Star, Star, Star, Barilla; Barilla, Barilla, Barilla, Barilla,

Dececco}.
12 non_strat_pair := {Barilla,Star}.

14 ∀ good :: Good : ∃ prod :: [produces(prod, good)] : strategicset(prod) ∧ produces(prod,
good).

15 ∀ controlled :: Company : (∃ o1, o2, o3, o4 :: [controlledBy(o1,o2,o3,o4,controlled)] :
16 strategicset(o1) ∧ strategicset(o2) ∧ strategicset(o3) ∧ strategicset(o4)) ⇒

strategicset(controlled).
17 ¬(∃ subset :: (Company) :
18 ((subset 6= strategicset) ∧ ∀ c :: Company : subset(c) ⇒ strategicset(c)) ∧
19 (∀ good :: Good : ∃ prod :: [produces(prod,good)] : subset(prod)) ∧
20 ∀ controlled :: Company : (∃ o1, o2, o3, o4 :: [controlledBy(o1,o2,o3,o4,controlled)] :
21 subset(o1) ∧ subset(o2) ∧ subset(o3) ∧ subset(o4)) ⇒ subset(controlled)).
22 ∀ c :: Company : ∀ c1 :: Company : non_strat_pair(c,c1) ⇒ (strategicset(c) ∧

strategicset(c1)).

One last improvement implemented by SOGrounder is the way Tseitin variables
are introduced. The Tseitinize transformation described above will introduce
every Tseitin literal at the innermost quantification level [66]. However, it is
possible to quantify the Tseitin variable T at a lower quantification level, as long
as every variable vi in the Tseitinized formula of T is quantified in the same
quantifier block or earlier as T . Recent QBF research suggests that this has a
large impact on search efficiency [10]. We also use polarity optimization [117]
which takes the polarity of the Tseitinized formula into account to reduce the
number of clauses introduced.

4.4.2 Grounding to QCIR

The negative impact of the Tseitinization procedure on the performance of QBF
solvers has been the target of much study. This has led to the development of
alternative transformations [92] and the proposal of new encodings that do not
enforce a conjunctive normal form, such as QCIR [84].

The QCIR format [67] instead accepts QBF formulas represented as quantified
circuits consisting of and, or, xor and ite2 gates. While the and and or gates

2if-then-else

76 A SECOND-ORDER LANGUAGE AND ITS GROUNDER

have an arbitrary number of inputs, the xor and ite gates are limited to two,
respectively three inputs; each gate has a single output.

Following the procedures sketched above up to and including ‘Prenex Form’
results in an internal representation consisting only of second-order quantifiers
over predicates, followed by an arbitrary nesting of conjunctions and disjunctions.
By skipping the second-to-last step of Tseitinization and performing grounding
on second-order quantifications directly, the resulting prenex non-CNF internal
representation can be translated to the QCIR format in a very straightforward
way, traversing the internal representation and introducing and and or gates
where applicable. Note that by skipping only the Tseitinization transformation,
grounding to QCIR does not use any xor or ite gates.3

4.5 Experiments

To evaluate SOGrounder’s performance, we use the model of the Strategic
Companies problem, modified to benefit from binary quantification as discussed
above (Listing 4.2)4.

To generate problem instances parametrized by the number of companies, we
used the method described in Maratea et al. [104]. The resulting instances are
comparable in size and difficulty to the benchmark set present in previous QBF
solver competitions.5 Using our model and SOGrounder, we generated QBF
encodings in QDimacs, for which the grounding times and sizes are reported in
Table 4.1. We also used the instantiation scheme (IS) described by Maratea et
al. [104] to generate QBF encodings. We compare the resulting grounding size
with that from SOGrounder by reporting the number of literals and clauses.

Regarding solving, we compare the performance of DepQBF [101] on the
QBF encodings in Table 4.2. Furthermore, using the QCIR output option of
SOGrounder, we have also solved the same instances using GhostQ [91], to judge
the impact of translating to a more high-level non-CNF QBF representation.
Note that as our tool generates QDimacs and QCIR files, we can use many
other solvers instead of DepQBF and GhostQ.

As a verification, and motivated to also compare with state-of-the-art solvers in
other paradigms, we also report grounding and solving times for the ASP solver
Clingo in the respective tables. For Clingo, we use an existing ASP encoding

3Nor does it produce non-prenex QCIR, which is supported by the general format but is
generally unsupported by solvers.

4Binaries and experiments available at https://bit.ly/2rRckXi
5http://qbflib.org/suite_detail.php?suiteId=19 on 17/5/2018.

EXPERIMENTS 77

that employs saturation [45] to encode the ΣP
2 -hard parts of the problem in

ASP.

#Companies Grounding time (ms) Lits Clauses
SOGrounder Clingo SOGrounder IS SOGrounder IS

14 220 8 282 436 1,054 1,319
29 266 16 582 901 2,179 2,729
38 322 22 762 1,180 2,854 3,575
54 409 38 1,082 1,676 4,054 5,079
77 626 65 1,542 2,389 5,779 7,241
82 684 67 1,642 2,544 6,154 7,711
94 952 83 1,882 2,916 7,054 8,839
100 867 92 2,002 3,102 7,504 9,403

Table 4.1: Overview of grounding times and sizes for strategic companies of size
n.

Solver Solving time (ms)
14 29 38 54 77 82 94 100

DepQBF (SOGrounder- QDimacs) 19 38 55 160 4,980 6,725 14,546 16,533
DepQBF (IS - QDimacs) 24 80 161 1,291 20,078 15,388 31,714 42,311

Clingo (ASP) 11 41 85 340 2,522 3,202 7,354 9,351
GhostQ (SOGrounder- QCIR) 120 177 205 252 565 863 2,110 2,355

Table 4.2: Overview of solving times for SOGrounder and IS (QDimacs), Clingo
(ASP), and GhostQ (QCIR).

It is clear from the results in Table 4.1 that SOGrounder produces smaller
groundings than those produced by IS. One contributing factor is the advanced
Tseitinization process described above. Other contributing factors are the tools
used by IS, and their choice to model the dual problem such that only two
quantifier blocks are introduced.

It is this smaller grounding that we identify as the main contributor for
SOGrounder’s better solving times w.r.t. IS, shown in Table 4.2. For Clingo,
we expect its optimized bottom-up grounding and powerful lookback heuristics
to account for its better ground and solving time. Finally, the highly positive
impact of using a more high-level QBF representation, e.g., QCIR, is noteworthy
in this use case. However, only further experiments will show whether this holds
in general.

To illustrate the effects of employing binary quantification, Table 4.3 reports
grounding times (in ms) for SOGrounder with and without using binary
quantifications (5 min. limit). Clearly, without such constructs or techniques

78 A SECOND-ORDER LANGUAGE AND ITS GROUNDER

to derive them, grounding can scale very bad. Note that binary quantification
does not affect the grounding size in this case.

Binary quantification Grounding time (ms)
5 8 14 17 29 30 33

no 244 385 3329 8608 – – –
yes 204 228 220 230 266 270 285

Table 4.3: Overview of SOGrounder’s grounding times (ms) with and without
binary quantification, 5 min time limit.

4.6 Conclusion and Future Work

We introduced a typed second-order language based on second-order logic, and
have shown how it can be used to model problems with second-order constraints,
taking the strategic companies problem as an example. Furthermore, we present
SOGrounder, a tool that accepts modelings in our typed second-order language
and grounds them to QBF. It is clear from experiments that this yields a
viable option for specifying and solving problems of a higher computational
complexity than FOL or even ASP. Its performance can match or even beat
existing hand-written QBF and state-of-the-art ASP encodings.

Nevertheless, to ensure performance on the large range of possible problems,
of varying complexity, we must expand the benchmark set of Section 4.5 and
investigate how advanced techniques such as GWB and Lazy Grounding interact
with Second-Order and the underlying QBF solvers. We also want to further
investigate the effects of Tseitinization in QBF, and build support for QBF
encodings which do not require CNF, such as QCIR. Lastly, we want to compare
with other, non ground-and-solve systems supporting a language that includes
SO, such as ProB [98].

Chapter 5

Semantics of Templates

This chapter is based on the following publication of which I am second author:
Dasseville, I., van der Hallen, M., Janssens, G. and Denecker M., “Semantics
of templates in a compositional framework for building logics”, in Theory and
Practice of Logic Programming, 15, 4-5 (2015), pp. 681 – 695 [35]. Specifically,
that paper achieves two main contributions:

1. It introduces a framework by which logics can be constructed in a
compositional way, and

2. It sketches the need for templates, discusses other approaches and
semantically identifies templates as second-order definitions, superseding
the earlier rewriting based semantics.

It is this second contribution that is of interest in this work, as Chapter 6
will provide an alternative viewpoint on templates. To provide the necessary
background, this chapter contains the relevant parts of the paper cited above.

Specifically, the introduction and related work section are taken in large part
from this paper; the introduction has been modified to clarify the drawbacks of
rewriting-based semantics and to indicate additional benefits arising from the
use of templates.

Personal contribution: 33%.

79

80 SEMANTICS OF TEMPLATES

5.1 Introduction

Declarative specification languages have proven to be useful in a variety
of applications, however sometimes parts of specifications contain duplicate
information. This commonly occurs when different instantiations of the same
abstract concept are needed. For example, in an application, we may have to
constrain multiple relations such that each of them is an equivalence relation,
or we may have multiple relations of which we want to define the transitive
closure. In most current logics, the constraints (e.g., reflexivity, symmetry and
transitivity) have to be written separately for each relation.

In the early days of programming, imperative programming languages suffered
from a similar situation where code duplication was identified as a problem.
The first solution proposed involved the use of macros, supported by a system
that syntactically rewrites every occurrence of a macro.

For specification languages (e.g., ASP), an analog for macros was introduced
and commonly called templates. Templates allow us to define a concept and
instantiate it multiple times, without affecting the language’s computational
complexity. Asserting that the two relations P and Q are equivalence relations
can be done using a template isEqRelation as in Listing 5.1.
Listing 5.1: This example defines an equivalence relation. (Reproduced
from [35])

1 {
2 isEqRelation(F) ←
3 (∀a : F(a,a)) ∧
4 (∀a,b : F(a,b) ⇔ F(b,a)) ∧
5 (∀a,b,c : (F(a,b) ∧ F(b,c)) ⇒ F(a,c)).
6 }

8 isEqRelation(P) ∧ isEqRelation(Q).

Existing treatments of templates mostly proceed in the same vein as imperative
programming macros, defining semantics by a source-to-source transformation.
This approach comes with some drawbacks:

• It breaks with the traditional approach of declarative, and knowledge
representation languages specifically, that language constructs, operators
and features are defined as (existing or new) logic concepts, and

• Assigning meaning through a source-to-source transformation often
impedes a general treatment of the concept itself: when templates are
defined as a source-to-source transformation, studying templates that

RELATED WORK 81

are self recursive (Example 5.3) or mutually recursive (Example 5.4)
becomes prohibitively hard.1

Apart from simply reducing duplication, the introduction of templates into
specification languages offers an additional benefit from which one can already
profit even when it is used only once: by grouping a set of constraints in a single
template with a descriptive name, one is already achieving a higher level of
abstraction in the specification, making the entire specification more readable.

In this chapter, we define the semantics of templates as second-order
inductive definitions. Subsequently it follows that macro-like source-to-source
transformations are simply a valid potential implementation when imposing
certain restrictions on the templates used.

5.2 Related Work

Abstraction techniques have been an important area of research since the dawn
of programming [126]. Popular programming languages such as C++ consider
templates as a keystone for abstractions [111]. In the ASP community, work by
Ianni et al. [76] and Baral et al. [8] introduced concepts to support composability,
called templates and macros respectively. The key idea is to abstract away
common constructs through the definition of generic ‘template’ predicates.
These templates can then be resolved using a rewriting algorithm.

More formal attempts at introducing more abstractions in ASP were made.
Dao-Tran et al. [34] introduced modules that can be used in similar ways
as templates but has the disadvantage that his template system introduces
additional computational complexity, so the user has to be very careful when
trying to write a specification that systems will support efficiently.

Previously, meta-programming [1] has also been used to introduce abstractions,
for example in systems such as HiLog [27]. One of HiLogs most notable features
is that it combines a higher-order syntax with a first-order semantics. HiLogs
main motivation for this is to introduce a useful degree of higher-order yet remain
decidable. While decidability is undeniably an interesting property, the problem
of decidability already arises in logic programs under well-founded or stable
semantics with the inclusion of inductive definitions: the issue of undecidability is

1For another example, consider the Gelfond-Lifschitz reduct [64] from ASP, which is
notoriously tricky-to-understand. We believe this is in large part because it is often seen just
as a source-to-source transformation process that reduces a logic program by removing some
rules in its entirety and dropping any negative atoms from others, as opposed to the result of
an operator in Approximation Fixpoint Theory (AFT) [41, 140]

82 SEMANTICS OF TEMPLATES

not inherent to the addition of template behavior. Furthermore, in recent times
deduction inference has been replaced by various other, more practical inference
methods such as model checking, model expansion, or querying. Furthermore,
for practical applications, we impose the restriction of stratified templates for
which an equivalent first-order semantics exists.

An alternative approach is to see a template instance as a call to another theory,
using another solver as an oracle. An implementation of this approach exists in
HEX [47]. This implementation however suffers from the fact that the different
calls occur in different processes. As a consequence, not enough information
is shared which hurts the search. This is analog to the approach presented
by Tasharrofi and Ternovska [131], where a general approach to modules is
presented. A template would be an instance of a module in this framework,
however the associated algebra lacks the possibility to quantify over modules.

5.3 Preliminaries: Rules and definitions

In this section, we will define the interrelated concepts of rules and definitions.
Specifically, we will make few assumptions on the vocabulary V and logic L for
which we introduce rules as long as there is an associated three-valued valuation
function. This valuation function maps formulas φ ∈ L and three-valued
structures I over V to the set {t,f,u}.
Definition 17 (Rules). For a given vocabulary V and logic L, a rule is any
expression P (x) ← φ, where P is a predicate symbol from V , x is a tuple of
variables and φ is a formula in the logic L such that the free variables of φ are
a subset of x.

The symbol P is often called the head of the rule, while the formula φ ∈ L is
referred to as the rule’s body.
Definition 18 (Definitions). For a given vocabulary V and logic L, a
definition ∆ is a set of rules over V for L.

We divide the symbols occurring in a definition ∆ in the set of defined predicate
symbols Def (∆), consisting of all predicate symbols occurring at least once in
the head of a rule ∈ ∆, and the set of opens Open(∆) containing all other
symbols. A defined domain atom of ∆ is any domain atom P (d) such that
P ∈ Def (∆).

To recover first-order inductive definitions using the definitions above, we restrict
the vocabulary V to a set of (typed) first-order symbols, allow only first-order
variables in x and take as logic L traditional first-order logic.

PRELIMINARIES: RULES AND DEFINITIONS 83

5.3.1 Semantics of definitions

We can derive the common two-valued well-founded semantics for definitions
over V for L from the three-valued valuation for L.

Definition 19 (t-set, u-set and f-sets). We call a set of domain atoms a
t-set, respectively u-set, f -set of partial interpretation I if its elements have
truth value t, respectively u, f in I.

Definition 20 (Closed partial interpretations). We call a partial
interpretation I closed under ∆ iff for all domain atoms P (d) and rules
P (d)← φ ∈ ∆ it holds that φI[x:d] = t implies P (d) = t.

Definition 21 (Unfounded sets). An unfounded set U of ∆ in I is a non-
empty u-set of defined domain atoms s.t. for all P (d) ∈ U and every rule r ∈
∆ with P as its head and φ as its body, φI[x:d,U :f] = f.

Informally, an unfounded set is any set of defined domain atoms such that if
one would assign them false instead, all their associated (ground) rule bodies
would evaluate to false as well.

Definition 22 (Partial stable definitions). A partial interpretation I is a
partial stable interpretation of ∆ iff

• for each domain atom P (d) where P ∈ Def (∆), P (d)I = Max≤t
{φI[d:x] |

∀x . P (x)← φ ∈ ∆};
• there exists no non-empty t-set T and no (possibly empty) u-set U of I

s.t. I[T : u][U : t] is closed under ∆; and
• there are no unfounded sets of ∆ in I.

Definition 23 (Well-founded Interpretations). We call an interpretation
I a well-founded interpretation of ∆ if

1. I is the ≤p-least partial stable model I ′ of ∆ such that I ′|Open(∆) =
I|Open(∆), and

2. I is exact.

Paradox-free definitions According to Denecker and Vennekens [43], sensible
definitions formalize the (informal) inductive definitions found in mathematical
texts, and are paradox-free.

Definition 24 (Paradox-free definition). A definition ∆ is paradox-free if
for any exact interpretation I for Open(∆), there is a (unique) well-founded
interpretation of ∆ extending I.

84 SEMANTICS OF TEMPLATES

Note that, by Definition 23, this is equivalent to “For any exact interpretation
I for Open(∆), the ≤p-least partial stable model I s.t. I extends I, is exact.”.

Nested definitions Note that the framework above, discussed in detail in [35],
in fact allows for nested definitions, by taking as logic L a logic already admitting
definitions, as long as we can provide a three-valued valuation for L.

Specifically for definitions, this can be challenging. Recently, Charalambidis
et al. [26] suggested extensions to Approximation Fixpoint Theory (AFT) to
allow for a three-valued extensional semantics for sets of rules that generalizes
the well-founded semantics. Alternatively, we can define such a three-valued
valuation for I for definitions based on the two-valued well-founded semantics
using Ultimate approximation, i.e., by evaluating under the two-valued well-
founded semantics all two-valued extensions I of I. The three-valued valuation
is then t (respectively f) iff all two-valued extensions evaluate to t (respectively
f), and u otherwise. For definitions ∆, we say the two-valued well-founded
semantics evaluates I to t if I is the well-founded interpretation of ∆ and
evaluates to f if it is not.

5.4 Templates and Template Libraries

To achieve the stated goal of reducing duplication in specifications, we
introduced [35] not just templates, but defined them within the context of
a library of templates.

To construct a library of templates TL, we first define a single common
vocabulary VTL for the entire template library.

Definition 25 (Template Library Vocabulary). A template library
vocabulary VTL is a vocabulary that consists of all pre-interpreted symbols
(addition, equivalence, etc.) and a set of second-order symbols, called the
template symbols.

Definition 26 (Template). A template over VTLis a paradox-free second-
order definition ∆ over VTL s.t. its defined symbols Def (∆) are a subset of the
template symbols of VTL.

Definition 27 (Template Library). A template library TL is a set T of
templates over a given template library vocabulary VTL such that:

1. for every template symbol TS ∈ VTL there is exactly one template ∆ ∈ T
that defines TS (i.e., TS ∈ Def (∆)), and

TEMPLATES AND TEMPLATE LIBRARIES 85

2. The template library defines a strict ordering <TL on template symbols
TS s.t. for every ∆ ∈ TL, if template symbol P ∈ Def (∆), and template
symbol Q ∈ Open(∆) then Q < P .

Note that by restricting the vocabulary of templates to the vocabulary VTL,
template symbols can only depend on:

• pre-interpreted symbols such as +, −, =, . . . ,

• other template symbols, and

However, any symbol T 6∈ VTL on which a template should depend, can simply
be passed to the template as an additional argument.

The introduction already contained an example template in Listing 5.1. The
meaning of this template is now clear: it is a second-order predicate that is true
for any binary predicate F that is reflexive, symmetric and satisfies transitivity.
We give two additional examples of templates, using more of the full power of
templates.

The template tc in Listing 5.2 expresses for two binary predicates P and Q of
type (T, T) that Q is the transitive closure of P.

Listing 5.2: The template tc expresses that Q is the transitive closure of P.
1 {
2 tc(P,Q) ←
3 { Q(x,y) ← P(x,y) ∨ (∃ z :: T : Q(x,z) ∧ Q(z,y)). }.
4 }

The template adj (Listing 5.3) uses both a nested definitions and self-recursion
to express for two binary predicates P and Q of type (T,T) that Q is the n-step
adjacency relation of P, e.g., Q(x,y) iff one can travel exactly n edges in P

starting at x to arrive at y.

Listing 5.3: The template adj expresses reachability in exactly n steps.
1 {
2 adj(P, P, 1).
3 adj(P, Q, n) ← {Q(x,y) ← ∃Q' :: (T,T) : adj(P,Q',n-1) ∧ ∃z :: T : Q'(x,z) ∧ P(z,y)}.
4 }

5.4.1 The Complexity of Templates

InDefinition 18, templates are defined as a paradox-free second-order definition
∆. Just as for first-order definitions, paradox-free second-order definitions are at

86 SEMANTICS OF TEMPLATES

least as powerful as extending second-order logic with a least fixed point operator.
It is a well-known result by Immerman [80] (p. 167) that second-order logic
extended with a least fixed point operator2 captures the EXPTIME complexity
class.

Recall that generalized games that may last for a number of moves exponential
in the size of the board are often EXPTIME-complete [130, 40], e.g., n × n
chess [55] or go [121].

We show that such games can be expressed using templates, as shown in
Listing 5.4; here, chessboards are represented as functions Board, Board’ from
pieces to positions. A Board is winning if there is a Board’ s.t. it is a valid
successor in chess and it is losing. A Board is losing if all its possible successors
are winning; it follows that lose holds for all values for Board for which no
successor exists (i.e., because the player is checkmate).

Note that movechess is a second-order template itself (not shown), defined to be
true for boards B,B′ if a valid chessmove leads from board B to board B′.

Listing 5.4: A template describing winning positions in chess.
1 {
2 win(Board) ← ∃Board' :: Piece → Position : movechess(Board, Board') ∧ lose(Board').
3 lose(Board) ← ∀Board' :: Piece → Position : movechess(Board, Board') ⇒ win(Board').
4 }

5.4.2 Template libraries for Existential Second-Order Logic

We have seen in the previous section that general templates are very expressive.
However, when we integrate templates into a specific language, e.g., the FO(·)
language of the IDP system, we are interested in expanding the practical
expressive power, rather than increasing the theoretical complexity.

Considering the IDP system specifically, it is possible to limit template libraries
and their templates such that we obtain an expressive power of existential
second-order logic. Model expansion over such templates is equally powerful
as model expansion over first-order logic with (possibly nested) first order
definitions (FO(ID∗)). Unsurprisingly, any occurrence of such a template can
be translated away to an FO(ID∗) formula.

To achieve this, we identify the languages FO(ID∗) φ, ESO(ID∗) ε and
ASO(ID∗) α defining, through mutual recursion, fragments of second-order
logic with nested inductive definitions (SO(ID∗)) in Figure 5.1, where x are

2At least, one that accepts second-order variables as an argument.

TEMPLATES AND TEMPLATE LIBRARIES 87

φ ::= s(x) | ¬φ | φ ∧ φ | ∃x : φ | {s(x)← φ} | let {s(x)← φ} in φ

ε ::= s(x) | S(X) | ¬α | ε ∧ ε | ∃x : ε | {s(x)← φ} | ∃X : ε | let {s(x)← φ} in ε

α ::= s(x) | S(X) | ¬ε | α∧α|∃x : α | {s(x)← φ} | ∀X : α | let {s(x)← φ} in α

Figure 5.1: The FO(ID∗), ESO(ID∗) and ASO(ID∗) fragments of SO(ID∗).

first-order variables, X are second-order variables while s are first-order symbols
and S are second-order (template) symbols.

Specifically, all three languages feature (nested) first-order definitions and a let-
construct which locally introduces predicate(s) for a subformula FO(ID∗), with
the restriction that the quantified symbols must be defined by an accompanying
(paradox-free) definition ∆. Effectively, this corresponds to a second-order
quantification. However, as a paradox-free definition ∆ has a unique well-
founded interpretation given an exact interpretation of its opens, we are free to
choose whether that quantification is universal or existential.

Beyond the two extensions above, FO(ID∗) corresponds to traditional first-
order logic with no explicit second-order quantifications, while ESO(ID∗) and
ASO(ID∗) allow strictly existential or universal quantification, respectively,
taking into account occurrences under negation(s).

By limiting the template library to non-recursive definitions consisting of a
single rule with a body ∈ FO(ID∗) extended with template applications, we
achieve the goal of gaining expressive power without increasing expressive power.

Proposition 1. Any formula φ in ESO(ID∗) over vocabulary V ∪ VTL s.t. V
and VTL are disjoint and φ does not contain definitions over template symbols
TS ∈ VTL, can be translated to a polynomially larger FO(ID∗) formula φ′ over
a vocabulary V ′ extending V s.t. it is V -equivalent to the SO(ID∗) formula
φ ∧ TL.

We refer to Dasseville et al. [35] for a complete proof. Informally,
because we restrict ourselves to non-recursive definitions, the well-founded
semantics is equivalent to Clark’s completion semantics [29], and completion
semantics admit substitution of template symbol applications by its definition’s
body. Subsequently, because template libraries must be stratified, recursive
substitution is guaranteed to terminate.

88 SEMANTICS OF TEMPLATES

5.5 Conclusion

In this preliminary background, we showed how to construct second-order
inductive definitions, whose potential to abstract over relations and whose
expressivity allow us to easily characterize many powerful templates.

In general, however, when working from the context of extending a specific
system such as IDP with support for templates the goal is to increase practical
expressivity, and not computational complexity. Therefore, we show that further
syntactical restrictions on templates can limit the expressivity of definitions such
that a) many useful templates are still covered, and b) given a library of such
templates, formula’s applying these templates can be rewritten to first-order
logic with (nested) inductive definitions.

Chapter 6

A Second-Order Pattern:
Integrating inferences in logic

This chapter consists of new, unpublished work.

Personal contribution: 100%.

6.1 Introduction

In the previous chapters, we have shown how our typed second-order language
can be grounded to QBF and have discussed the concept of ‘templates’ and their
semantics. In this chapter, we identify an often reoccurring pattern in second-
order logic specifications, and discuss how the reasoning that it represents can
be supported by introducing the concepts of parametrized theories and variant
world quantifiers, providing an alternative point-of-view on templates.

Essentially, the pattern corresponds to this: while the knowledge base paradigm
traditionally offers a declarative modeling of knowledge and a procedural
or imperative language for performing inferences on this knowledge, some
knowledge concepts themselves correspond to the result of an inference over
a smaller, simpler knowledge base. Parametrized theories and variant world
quantifiers allow expression of these inferences in logic itself in a structured and
declarative way.

First, we recall that an interpretation of a set of (first and second-order) symbols
can be seen as a possible world. The pattern we then discern, visualized in

89

90 A SECOND-ORDER PATTERN: INTEGRATING INFERENCES IN LOGIC

C(W)

C(W')

C(W'')¬

C'(W,W')

Figure 6.1: Visual representation of the second-order pattern, with the world
W , its variants W ′ and W ′′, the conditions C and supplementary condition C’
between W and variant worlds satisfying C.

Figure 6.1, expresses the following: (1) that the possible world W should
satisfy a set of conditions C, and furthermore, (2) that either some or all
variant worlds W ′ of the possible world W that satisfy the same conditions C,
satisfy a supplementary condition C ′, such as being related in a specific way to
W .

The second part of the pattern can be considered as a form of ‘binary
quantification’ over variant worlds: a condition C ′ is asserted for some or
all members of a certain set. Thus, expressing this condition requires to express
the relevant class of variant worlds W ′ of W . This class of variant worlds
consists of those worlds W ′ that:

1. satisfy the specific conditions of C, just as W , and

2. coincide with W on a specific set of terms and atoms, called the ‘common
core’.

The definitions of language constructs supporting the pattern above are given
in Section 6.2. However, we to allow a more detailed and comprehensive
discussion of examples illustrating our envisioned pattern, we already introduce
the language constructs informally as follows:

• Parametrized theories T and their application ∗T (S1, . . . , Sn) where S1,
. . . , Sn are arguments of the theory T .

• Two variant world quantifiers � (all) and ♦ (some) that allow
reinterpretation of (specific subsets of) symbols by a parametrized theory.
For example, �T (S : {x | φ}) quantifies over all reinterpretations of S by
T that do not change the value of S for any x for which φ holds.

INTRODUCTION 91

• An unshadowing operator ↑ that allows referral to symbols before
reinterpretation.

6.1.1 Examples

To illustrate the pattern, this section explores some examples. These examples
show how we can think about certain problems as wanting to find a specific
model of a (simpler) theory, e.g., the minimal model, and how we consequently
can express these problems using parametrized theories and variant world
quantifiers.

While in some of the examples, the same properties can be expressed in specific
languages or using inferences built into solvers, allowing expression of these
properties and inferences in the language itself leads to a more general approach.

At the end of each example, to fully illustrate the problem and its modeling,
we already show the specification of the problem using the language constructs
that were introduced informally above. We encourage the reader to return to
these specifications after the language constructs have been formally introduced
in Section 6.2.

Chromatic Coloring Problem

As a first example, consider the well-known Graph Coloring problem and its
variant Chromatic Coloring. To solve the Graph Coloring problem, we must
find a coloring for a given graph G.

Definition 28 (Coloring). Given a graph G with vertices V and a set of
colors C, a coloring is an assignment (function) f of vertices to colors such
that for every two vertices v1, v2 that share an edge (v1, v2) ∈ G, f(v1) 6= f(v2).

In the Chromatic Coloring problem, we must find an optimal coloring, i.e., one
that uses the smalles number of colors possible.

Definition 29 (Optimal Coloring). A function f from vertices V to colors
C is an optimal coloring iff 1) f is a valid coloring and 2) for every other
valid coloring f ′, the number of colors used by f is smaller than or equal to the
number of colors used by f ′.

We now view the chromatic coloring problem as an instance of the second-order
pattern; note that it corresponds to a minimal model of a (simpler) theory T ,
expressing what it means to be coloring.

92 A SECOND-ORDER PATTERN: INTEGRATING INFERENCES IN LOGIC

Listing 6.1: A theory representing the coloring constraints
1 theory Tcolor{
2 type N.
3 type C.

5 G :: (N,N).
6 f :: N → C.
7 U :: (C).

9 ∀ x, y :: N : G(x,y) ⇒ f(x) 6= f(y).
10 ∀ c :: C : U(c) ⇔ (∃ x :: N : f(x) = c).
11 }

First, we identify the world W from our pattern: for the chromatic coloring
problem, this world W consists of the graph G, a function f that represents a
mapping from nodes to colors, and a predicate U that represents used colors.

Next, we specify the conditions C that a world W must satisfy: In this instance,
the conditions C are simply those of a coloring with colors from U , i.e., two
nodes sharing an edge are not assigned the same color c, and the set U is exactly
the set of colors assigned to a node. These conditions are captured by the theory
Tcolor of Listing 6.1.

In the chromatic coloring problem, the variant worlds W ′ to be considered are
simply all worlds that:

1. satisfy the theory Tcolor , and

2. coincide with W on the interpretation of G.

For the world W and its variant worlds W ′, we want the following condition C ′
to hold: For every variant world W ′, it’s interpretation of the set of used colors
U is not a subset of the interpretation of U by W .

1 *Tcolor(G,f,U) ∧ �Tcolor(G:{(n1,n2) | True}, f:{}, U:{}) : ¬(U < U↑).

Temporal Logics

Temporal logics are logic systems designed to represent and reason about
properties in the context of time; for example, the property ‘whenever a process
requests a resource, it will eventually be granted access to this resource’. The rules
of processing requests and allocating resources can subsequently be described as
a (labeled) transition system. We can then express the aforementioned property
in a temporal logic such as Linear Temporal Logic [118] (LTL) as G (req => F

INTRODUCTION 93

s1 s2

s3

a1

a2

a3

a4

Figure 6.2: Example transition system for temporal logics.

alloc), or in Computation Tree Logic [30] (CTL) as AG (req ⇒ AF alloc). We
give an example on how to model these same properties using our pattern.

Consider the transition system from Figure 6.2. We now want to express that
‘there is a sequence of actions such that at each time t it is possible to reach the
state s3 in the future’. It is not necessary that we actually ever pass the state
s3. This property corresponds to the CTL expression AG EF s3.

By making time explicit, we will model this property using our pattern.

Note that this corresponds at every time point to the computation of a model
of a (simpler) theory T which expresses that a sequence of actions exists such
that we reach state s3.

First, we identify the world W : for our example, this consists of a sequence of
actions represented by a function act from Time to Action and a state function
state from Time to State.

Next, we specify the conditions C that a world W must satisfy: In general,
these conditions enforce the preconditions and the effects of actions a at every
time t. For our example, these conditions are modelled by the theory Tactions
from Listing 6.2.

For this example, the variant worlds W ′ to be considered are all worlds that:

1. satisfy the theory Tactions, and

2. coincide with W on the interpretation of act and state up until a given
timepoint t′.

For every time point t′, we want the following condition C ′ to hold for world
W and its variant worlds W ′ for timepoint t′: there is a variant world W ′ such
that at some point tf > t′, state(tf)=s3 holds.

1 ∀ t' :: Time : *Tactions(act, state) ∧ ♦Tactions(act:{t | t < t'}, state:{t | t < t'}) : ∃ t
:: Time : t > t' ∧ state(t)=s3.

94 A SECOND-ORDER PATTERN: INTEGRATING INFERENCES IN LOGIC

Listing 6.2: A theory representing the transition system of Figure 6.2.
1 theory Tactions{
2 type Action.
3 type State.
4 type Time.

6 [. . .]

8 act :: Time → Action.
9 state :: Time → State.

10 transitions :: (State, Action, State).

12 Action := {a1;a2;a3;a4}.
13 State := {s1;s2;s3}.
14 transitions := {(s1,a1,s2); (s1,a3,s3); (s2,a2,s1); (s3,a4,s3)}.

16 ∀t :: Time : transitions(state(t),act(t),state(t+1)).
17 }

Actual Causation

Causality is an often studied subject in science, and ‘actual causality’ is the study
of causality not in general (e.g. “smoking causes lung cancer”), but “focus[ing]
on particular events [such as] the fact that David smoked like a chimney for 30
years caused him to get cancer last year” [70]. One popular way of defining
when a certain fact is an actual cause of an event, is the use of counterfactual
reasoning.

Such counterfactual reasoning can be modeled using this second-order pattern.
Specifically, we consider the structural equations, as introduced by Halpern and
Pearl [71]. Structural equations describe the mechanisms by which variables
(causually) influence each other. For this purpose, the variables in structural
equations are often split into the exogenous and endogenous variables. In
short, the endogenous variables are described by the structural equations, while
the exogenous variables are factors determined by the outside world (and
consequently are never set by the equations).

To illustrate how the SO pattern can be applied here, we consider the following
well-known example:

“Suzy and Billy both pick up rocks and throw them at a bottle.
Suzy’s rock gets there first, shattering the bottle. Since both throws
are perfectly accurate, Billy’s would have shattered the bottle had it
not been preempted by Suzy’s throw.” (Paul and Hall [69])

We now use the SO Pattern to conclude that, by Halpern’s modification [70] of

INTRODUCTION 95

Listing 6.3: A theory representing the structural equations of the rock-throwing
example.

1 theory Tcausal{
2 type Variable.

4 trues :: (Variable).
5 shatter :: Bool.

7 Variable := {suzy_throws;suzy_hits;billy_throws;billy_hits}.

9 trues(suzy_throws) ⇔ trues(suzy_hits).
10 (trues(billy_throws) ∧ ¬trues(suzy_hits)) ⇔ trues(billy_hits).
11 (trues(suzy_hits) ∨ trues(billy_hits)) ⇔ shatter.
12 }

the Halpern and Pearl definition of actual causation, Suzy throwing her rock is
an actual cause of the bottle shattering, while Bill’s throw is not.

First, we will take at how to model the structural equations. Here, we choose
to model the variables from the structural equations as Herbrand elements, and
let their evaluation be modeled by a predicate trues. Listing 6.3 shows the
specification for the structural equations of the rock-throwing example, where
the ‘hits’ variables are introduced to model the preemption of Suzy’s throw
with respect to Billy’s.

To apply the pattern, the world W consists of the predicate trues, which
represents the evaluation of the rock-throwing problem’s variables, and the
proposition shatters indicating whether the bottle shatters.

Next, the conditions C that a world W must satisfy are exactly those given by
the specification of the structural equations of Listing 6.3.

Lastly, for actual causation, we must consider variant worlds W ′ that satisfy the
theory Tcausal , but, the ‘common core’ betweenW andW ′ can vary. Specifically,
an actual cause is a subset-minimal set AC of variables such that reassigning
the variables in AC while leaving all other variables the same, means the bottle
doesn’t shatter.

This corresponds to the following expression, which uses variant world
quantifications twice: once to express that changing the variables in AC means
the bottle doesn’t shatter, and once to express that this set AC is minimal.

1 ∃AC :: (Variable) : ∗Tcausal(trues, shatter) ∧ shatter ∧
2 (♦Tcausal(trues:{v | ¬AC(v)},shatter:{}): ¬shatter) ∧
3 ∀AC' :: (Variable) : (AC' < AC ⇒ �Tcausal(trues:{v | ¬AC'(v)},shatter:{}) : shatter).

Note that in actual causation, we find an example where the ‘common core’ is

96 A SECOND-ORDER PATTERN: INTEGRATING INFERENCES IN LOGIC

Listing 6.4: Example theory for brave (and cautious) reasoning.
1 theory Tbirds {
2 type Animal.

4 bird :: (Animal).
5 pinguin :: (Animal).
6 fly :: (Animal).

8 ∀ animal :: Animal : bird(animal) ∧ ¬pinguin(animal) ⇒ fly(animal).
9 }

not known beforehand. Instead, the common core is in fact searched, as they
relate to actual causes.

Brave Reasoning

Brave (and cautious) reasoning are two well-known forms of default
reasoning [50]. In situations where different assumptions can be used to derive
conclusions, that are potentially mutually inconsistent, brave and cautious
reasoning represent two modes of reasoning: in the case of brave reasoning,
anything for which a set of assumptions exists can be derived, while cautious
reasoning only allows derivation of those conclusions that can be derived
regardless of the set of assumptions.

To illustrate brave reasoning, we need a model where one or more assumptions
can be made. Consider, as a toy example, the following situation: “All bird
can fly, except for pinguins. Tweety is a bird. Can Tweety fly?”. We now look
at how we can solve the question “Can Tweety fly” under brave reasoning (in
which case the answer is yes), using our SO pattern.

First, we identify the world W. It simply consists of a single predicate fly.

Next, we specify the conditions C that a world W must satisfy. This is a
straightforward modeling of the sentences in our example, as can be found in
Listing 6.4.

The variant worlds W ′ to be considered here are simply all worlds that satisfy
the theory Tbirds, i.e., in this example, the common core is empty.

We say fly(tweety) is a brave consequence if in at least one of the variant
worlds W ′, fly(tweety) is true. This corresponds to the following expression:

1 consequence ⇔ ♦Tbirds(bird:{tweety}, pinguin:{}, fly:{}) : fly(tweety).

THEORETICAL FOUNDATION 97

6.2 Theoretical foundation

We look at how the theoretical foundations of our typed second-order language
can be extended with parametrized theories and their applications, and with
variant worlds quantifications. First, we will recapitulate the typed second-order
language without these extensions.

Consider a simple type system consisting of basic types T , and their combinations
(T1, . . . , Tn) and T1, . . . , Tn → T , representing n-ary predicate and n-ary
function types respectively. Remark that T1, . . . , Tn represent only basic types;
higher-order predicates or functions are not considered.

Definition 30 (Vocabulary). A vocabulary V is a tuple consisting of 1) a set
Θ of basic types T , each with a natural ordering ≤T , 2) a set of typed predicate
symbols P/n, and 3) a set of typed function symbols f/n. The types of these
predicate and function symbols combine only T from Θ.

Definition 31 (Terms). A term t over a vocabulary V is either

• a variable,
• a predicate symbol P or function symbol f from V , or
• a function application f(t1, . . . , tn), where f is either a symbol from V or

a variable, representing an n-ary function, and t1, . . . , tn are terms over
V .

Note that in second-order logic, predicate and function symbols can occur as
terms, e.g., in the equality constraint P1 = P2, P1 and P2 are terms.

To type arbitrary terms t, we introduce a typing context Γ which is a sequence
of symbols and variables with their types; we call the combination of a symbol
or variable with its type an assumption. The element relation ∈ expresses that
the typing context Γ contains a symbol or variable with a certain type, e.g.,
x :: T ∈ Γ. The empty typing context can be written as ∅, and typing contexts
can be extended using a comma, e.g., Γ, x :: T . With every vocabulary V is
associated a typing context ΓV , i.e., the sequence of all typed predicate symbols
P/n and typed function symbols f/n declared in V .

Using the typing context Γ, we can define the typing relation on terms t:
Γ ` t :: T expresses that the term t is well-typed and has type T when given
the assumptions in Γ.

Definition 32 (Well-Typed Terms). A term t is well-typed under the
assumptions of Γ with type T , i.e., Γ ` t :: T iff

• t is a variable v s.t. v :: T ∈ Γ,

98 A SECOND-ORDER PATTERN: INTEGRATING INFERENCES IN LOGIC

• t is a (predicate or function) symbol s s.t. s :: T ∈ Γ, or
• t is a function term f(t1, . . . , tn) with f a function variable or symbol s.t.

Γ ` f :: T1, . . . , Tn → T and Γ ` t1 :: T1, . . . , Γ ` tn :: Tn.

Definition 33 (Second-Order Formula). Second-order formulas over a
vocabulary V are inductively defined as follows:

• P (t1, . . . , tn) is a formula if t1, . . . , tn are terms over vocabulary V and
P is either 1) an n-ary predicate symbol from V or 2) an n-ary predicate
variable;

• ¬φ, φ ∧ ψ, and φ ∨ ψ are formulas if φ and ψ are formulas;
• ∃x :: T : φ and ∀x :: T : φ are formulas if φ is a formula, and x is a

first-order or second-order (predicate or function) variable of type T ; and
• t1 = t2, t1 < t2 are formulas if t1 and t2 are terms over V .

The shorthands ⇐, ⇒ and ⇔ are defined as usual, as are >, ≤, and ≥.

We extend well-typedness to formulas φ, writing Γ ` φ to mean that φ is
well-typed under the assumptions of Γ.

Definition 34 (Well-Typed Formulas). A formula φ is well-typed under
the assumptions of Γ, iff φ is either:

• a predicate application P (t, . . . , tn) where P :: (T1, . . . , Tn) ∈ Γ and Γ `
t1 :: T1, . . . , Γ ` tn :: Tn respectively,

• ¬ψ, ψ ∧ ψ′, ψ ∨ ψ′ where Γ ` ψ and Γ ` ψ′,
• ∃x :: T : ψ, ∀x :: T : ψ where Γ, x :: T ` ψ, or
• t1 = t2 or t1 < t2, where there is a type T s.t. Γ ` t1 :: T and Γ ` t2 :: T .

Parametrized Theories

We can now introduce parametrized theories as follows.

Definition 35 (Parametrized Theories). A parametrized theory T consists
of a vocabulary VT and a second-order formula φT over VT , called the body
and (optionally) an interpretation for some of the types T in VT .

Example 2. Consider the example parametrized theory Tcolor of Listing 6.1.
Its vocabulary VTcolor (Lines 2–7) defines two types, N and C. It also declares
three symbols: a binary predicate G of type (N, N), a function f of type N → C,
and a set U of type (N).

The formula φT is given by the conjunction of the Lines 9–10.

THEORETICAL FOUNDATION 99

The symbols declared by vocabulary VT are considered the arguments of
the parametrized theory. The vocabulary VT imposes a fixed order for the
arguments.

Any auxiliary symbols that should not be arguments can be introduced explicitly
by quantifying them in the second-order formula φT , and can be assigned a
specific value using an equality constraint.

Definition 36 (Signatures). The signature σ(T) of parametrized theory T is
defined as the tuple containing the type of every symbol defined in the vocabulary
VT , in order of occurrence.

The signature σ(Tcolor) for parametrized theory T color defined in Listing 6.1
is 〈(N, N), N → C, (C)〉.

Definition 37 (Well-Typed Theories). A parametrized theory T is well-
typed if:

• The formula φT is well-typed under the assumptions of ΓVT , i.e., ΓVT `
φT , and

• the types T used in the signature σ(T) of T are not interpreted by T . All
other types T declared in VT must be interpreted by T .

The second requirement enforces a level of genericness on parametrized theories
T . On the one hand, types not present in the signature σ(T) are interpreted by
T , but no argument symbol takes arguments of such a type. We sketch a use
case for such a type: consider a theory T that declares a type Node, declares
a type Color and interprets it as {R,G,B}, and declares a predicate edge of
type (Node,Node). The body of T , φT , can quantify over functions labeling of
type Node → Color to check that the graph represented by edge can be colored
using only three colors. As Color is interpreted by T we know that only three
colors exist, and that they are R, G and B.

On the other hand, types present in the signature σ(T) cannot be interpreted
by T , thus T cannot make any assumptions about how many elements or which
elements are in type T . When a specific element of type T is needed, the theory
T can declare a constant of type T such that this specific element can be passed
as an argument. Likewise, the set of elements of type T can be passed as a
unary predicate.

We only impose this restriction to simplify the theoretical discussion; the
implementation (Section 6.3) instead checks that when a parametrized theory
T is applied, types are consistent: if T interprets a type T that occurs in
σ(T), then T has the same interpretation by T as by its caller. We can justify
this more permissive condition by noting that this corresponds to adding the

100 A SECOND-ORDER PATTERN: INTEGRATING INFERENCES IN LOGIC

Listing 6.5: An example of a parametrized theory application
1 type Node.
2 type Col.

4 Node := {n1; n2; n3; n4}.
5 Col := {Red; Blue}.

7 ∃G :: (Node, Node) : ∃f :: Node→Col : ∃U :: (Col) : *Tcolor(G,f,U).

necessary additional arguments (a unary predicate and a constant for every
element in the interpretation of T) and modifying φT to enforce the consistency.
Such an encoding would, however, be very cumbersome and counterproductive.

A parametrized theory T can be applied to variables and symbols. We extend
Definition 33 (Formulas) and Definition 34 (well-typed formulas) in the
following definitions:

Definition 38 (Second-Order Formulas ext.). ∗T (S1, . . . , Sn) is a formula
if T is a parametrized theory whose vocabulary VT contains n symbols.

We consider all parametrized theories that are defined to be available globally.

Definition 39 (Well-Typed Formulas ext.). The application
∗T (S1, . . . , Sn) of a parametrized theory T is well-typed iff σ(T) = 〈T1, . . . , Tn〉,
Γ ` S1 :: T ′1, . . . , Γ ` Sn :: T ′n, and there exists a substitution s of types Ti
(from VT) to T ′i such that s(σ(T)) is 〈T ′1, . . . , T ′n〉.

Example 3. Listing 6.5 shows an application of parametrized theory Tcolor
defined in Listing 6.1. This application of Tcolor is well-typed with the
substitution N 7→ Node, C 7→ Col.

We point out that by extending the definition of second-order formulas with
theory applications, these constructs can occur (recursively) in theory definitions.
We introduce the notion of stratification, and require that the set of all defined
parametrized theories be stratified.

Definition 40 (Stratification). A set of parametrized theories {T1, . . . , Tn}
is stratified if there exists a partial ordering such that for every theory Ti whose
formula φTi applies a theory Tj, it holds that Ti precedes Tj in the ordering.

Variant World quantifications

Now that we have introduced parametrized theories, we can introduce variant
world quantifications. Recall that the common core of a class of variant worlds

THEORETICAL FOUNDATION 101

was specified using sets of tuples of terms, either given by enumeration or by a
formula. We formalize these common core sets:

Definition 41 (common core sets). Given a predicate or function P with
arity n from vocabulary V :

• P : {t1, . . . , tk} is a common core set for P iff every ti is an n-ary tuple
(ti,1, . . . , ti,n),

• P : {(x1, . . . , xn) | φ} is a common core set for P (by formula) iff φ is a
formula whose free variables are a subset of {x1, . . . , xn}.

Definition 42 (Well-Typed Common Cores). A common core set P : s is
well-typed (Γ ` P : s) iff P :: (T1, . . . , Tn) ∈ Γ or P :: T1, . . . , Tn → T ∈ Γ (i.e.,
P is an n-ary predicate or function symbol in Γ) and P : s is of the form:

• P : {t1, . . . , tk} where each ti is an n-ary tuple of terms (ti,1, . . . , ti,n) s.t.
Γ ` ti,1 :: T1, . . . , Γ ` ti,n :: Tn; or

• P : {(x1, . . . , xn) | φ} and Γ, x1 :: T1, . . . , xn :: Tn ` φ.

We extend the definition of formulas (Definition 38) and terms (Definition 31)
to include quantifications over variant worlds and the unshadowing operator ↑.

Definition 43 (Second-Order Formulas ext.).

• �T (S1 : s1, . . . , Sn : sn) : φ and ♦T (S1 : s1, . . . , Sn : sn) : φ are formulas
if T is a parametrized theory with n arguments, S1, . . . , Sn are symbols,
every si is a common core set for symbol Si and φ is a formula.

• P ↑(t1, . . . , tn) is a formula if P is an n-ary predicate symbol and t1, . . . , tn
are terms.

Definition 44 (Terms ext.).

• t↑ is a term iff t is a variable, predicate symbol P or function symbol f .
• f↑(t1, . . . , tn) is a term iff f is a function and t1, . . . , tn are terms.

Note that this definition limits the ↑ operator: it cannot be applied iteratively.

To check whether a formula or term is well-typed, we must keep track of whether
we can dereference a variable or symbol using ↑. We extend the typing context
Γ s.t. it contains records S↑ for symbols that can be dereferenced.

Definition 45 (Well-typed Formulas ext.).

• �T (S1 : s1, . . . , Sn : sn) : φ and ♦T (S1 : s1, . . . , Sn : sn) : φ are well-typed
iff

102 A SECOND-ORDER PATTERN: INTEGRATING INFERENCES IN LOGIC

1. for every common core set Si : si, Γ ` Si : si,
2. there exists a substitution s such that s(σ(T)) = 〈T1, . . . , Tn〉, where

Γ ` S1 :: T1, . . ., and
3. Γ, S↑1 :: T1, . . . , S

↑
n :: Tn ` φ.

• P ↑(t1, . . . , tn) is well-typed iff P ↑ :: (T1, . . . , Tn) ∈ Γ and Γ ` t1 :: T1, . . . ,
Γ ` tn :: Tn.

Definition 46 (Well-typed Terms ext.).

• t↑ is well-typed with type T iff t↑ :: T ∈ Γ.
• f↑(t1, . . . , tn) is well-typed with type T iff f↑ :: T1, . . . , Tn → T ∈ Γ and

Γ ` t1 :: T1, . . . , Γ ` tn :: Tn.

6.2.1 Semantics

This section formalizes the semantics of our constructs.
Definition 47 (Structure). A structure I for a vocabulary V assigns 1) for
every type Ti a finite domain Di, 2) for every predicate P of type (T1, . . . , Tn)
in V a relation P I ⊆ D1 × . . . × Dn, and 3) for every function f of type
T1, . . . , Tn → T0 in V a function fI :: D1, . . . , Dn → D0.
Definition 48 (Skeleton Structure). Every parametrized theory T has a
(unique) skeleton structure IT associated with it that consists only of domains
for the types in VT that are interpreted by T .

Recall that structures can be modified and extended using the notation I[x : v]:
if x already has a value in I, its value is modified, otherwise I is extended with
a value for x. The same holds for skeleton structures.

We extend the valuation function (·)I to common core sets P : s:
Definition 49. (P : s)I is defined as follows:

• P : {t1, . . . , tk}I = {t1
I
, . . . , tk

I}
• P : {(x1, . . . , xn)|φ} where the arguments of P have types Ti and Di is

the domain for Ti in I, evaluates under I to
⋃
d1∈D1,...

{(d1, . . . , dn)} s.t.
I[x1 : d1, . . . , xn : dn] |= φ,

Definition 50 (Coinciding Structures). We say structure I coincides with
structure I ′ on symbol S with common core set s and substitution of S by S′ iff
for all (d1, . . . , dn) ∈ (S : s)I , SI(d1, . . . , dn) = S′

I′(d1, . . . , dn).

The satisfaction relation I |= φ is defined using structural induction on the
formula φ, and is defined as usual for ∧,∨,¬,∀ and ∃. For conciseness, we only
consider theories with a single argument S’:

THEORETICAL FOUNDATION 103

Definition 51 (Satisfaction Relation).

• I |= ∗T (S) where T defines S′ in its vocabulary VT iff the skeleton
structure IT extended with the value SI for symbol S′, and its domains,
satisfies φT , i.e., IT [S′ : SI] |= φT .

• I |= �T (S : s) : φ (resp. ♦) where T defines S′ in its vocabulary VT , iff
for every (resp. some) interpretation I ′ s.t.
1. I ′ |= φT
2. I coincides with I ′ on s with substitution S = S′,

it holds that I[S : S′I
′
, S↑ : SI] |= φ.

• I |= P ↑(t1, . . . , tn) iff (tI1 , . . . , tIn) ∈ P ↑I .

Note that we introduce a new symbol S↑ for any symbols shadowed by our
variant world quantifications. We extend the valuation function of terms under
I with rules such that terms constructed using the ↑ operator refer to these
new symbols.

Definition 52 (Valuation of terms - extended).

• (S)↑I = (S↑)I , where S is a variable, predicate symbol P or function
symbol f .

Note that in this definition, on the left-hand side of the equality, ↑ is the
unshadowing operator, whereas on the right-hand side ↑ is part of the name of
S↑.

6.2.2 Expressivity

In this section we show that the proposed language constructs are, in fact,
equally expressive as second-order quantification. To this end, we will first show
how to transform second-order logic to first-order formulas extended with � and
♦ expressions while preserving semantics. Subsequently, we will show that any
theory application and any � (resp. ♦) expression can likewise be translated to
a second-order logic expression.

Transforming Second-Order Logic to FOL with � and ♦

We will define the transformation T·U from a second-order formula φ to a formula
TφU in first-order logic with � and ♦.

104 A SECOND-ORDER PATTERN: INTEGRATING INFERENCES IN LOGIC

Listing 6.6: Theory introduced for a second-order quantification over a symbol
P .

1 theory T {
2 type T1.
3 . . .
4 type Tn.

6 P :: (T1, . . ., Tn).

8 True.
9 }

We first note that the transformation of the predicate or function application,
conjunction, disjunction, negation and the first-order quantifiers ∀ and ∃ is
trivial.

Any universal second-order quantification ∀P :: (T1, . . . , Tn) : φ can be
transformed in the following way: First, we extend the vocabulary with a symbol
of type (T1, . . . , Tn). Furthermore, we introduce the parametrized theory T from
Listing 6.6. Now we can substitute the quantification ∀P :: (T1, . . . , Tn) : φ by
�T (P : {}) : TφU.

This transformation sketched above can trivially be extended to cover both
quantifications over functions and existential quantifications.

Proposition 2. Let φ be a formula over vocabulary V . For any interpretation I,
I |=SO φ iff there is an interpretation I ′ s.t. I and I’ are vocabulary-equivalent
on V (I =V I ′) and I ′ |=�,♦ TφU.

Proof. The proof proceeds by structural induction on the formula φ. We focus
specifically on the case of second-order quantifications in φ.

First, we extend the transformation relation to structures I ; this transformation
maps I to a structure TIUφ over vocabulary V extended with any second-order
variables P/n that are bound by second-order quantifications in φ. The valuation
function of TIUφ assigns these variables P/n any arbitrary value in its type.

By the satisfaction relation |=SO, I |=SO ∀P :: (T1, . . . , Tn) : φ iff for all values
v of type (T1, . . . , Tn), I[P : v] |=SO φ.

Considering the transformation of ∀P :: (T1, . . . , Tn) : φ, by the satisfaction
relation |=�,♦, TIUφ |=�,♦ �T (P : {}) : TφU iff for all interpretations I ′ s.t.
I ′ |=�,♦ T , it holds that TIUφ[P : P I′] |= TφU.

THEORETICAL FOUNDATION 105

It is easy to see that any value v of type (T1, . . . , Tn) corresponds to a structure
I ′ satisfying T and vice versa. Thus, I |=SO ∀P :: (T1, . . . , Tn) : φ iff TIUφ |=�,♦

�T (P : {}) : TφU.

Transforming FOL with � and ♦ to Second-Order Logic

We define the translation V·W from a formula φ in first-order logic extended
with � and ♦ to a second-order formula VφW.

Consider the variant world quantification �T (P : c) : φ where

• theory T has a single vocabulary symbol P ′ with type (T ′1, . . . , T ′n).
Furthermore, we assume that its body φT does not mention any
parametrized theories T ’.

• P is a predicate symbol or variable with type (T1, . . . , Tn), and

• c is a common core set for P : {(x1, . . . , xn) | φcc}

Such a variant world quantification can be transformed as follows: First,
a new symbol Pquant with type (T1, . . . , Tn) is introduced by universal
quantification. The common core set is translated into the formula ψcc, defined
as ∀x1 :: T1, . . . , xn :: Tn : φcc ⇒ (P (x1, . . . , xn) ⇔ Pquant(x1, . . . , xn)).
Lastly, we instantiate the body φT of theory T , by substituting all
occurrences of P ′ by the earlier introduced Pquant and substituting any
occurrences of the types T ′1 . . . T ′n by the types T1 . . . Tn. In summary, we
transform the variant world quantification to ∀Pquant :: (T1, . . . , Tn) : (ψcc ∧
φT [P ′/Pquant , T

′
1/T1, . . . , T

′
n/Tn])⇒ VφW.

Variant world quantifications of the form ♦T (P : c) : φ can be transformed to
∃Pquant :: (T1, . . . , Tn).

This transformation can trivially be adapted to cover both variant world
quantifications with multiple arguments as well as function symbol arguments.
Furthermore, the stratification of theories justifies the assumption that the body
of φT does not mention any parametrized theories.

Proposition 3. Let φ be a formula over vocabulary V . For any interpretation
I, I |=�,♦ φ iff the interpretation I |=SO VφW.

It is easy to see that this proposition holds, as quantification over models
of a theory T corresponds directly to quantification over the symbols in its
vocabulary.

106 A SECOND-ORDER PATTERN: INTEGRATING INFERENCES IN LOGIC

6.3 Implementation

In this section, we discuss the implementation of parametrized theories, variant
world quantifiers and the unshadowing operator ↑. It extends the grounder
discussed in Chapter 4.

We will illustrate the rewriting with our specification for the chromatic coloring
problem as given in Listing 6.1 (see also Listing 6.7).

Listing 6.7: A theory representing the coloring constraints
1 theory Tcolor{
2 type N.
3 type C.

5 G :: (N,N).
6 f :: N → C.
7 U :: (C).

9 ∀ x, y :: N : G(x,y) ⇒ f(x) 6= f(y).
10 ∀ c :: C : U(c) ⇔ (∃ x :: N : f(x) = c).
11 }

13 *Tcolor(G,f,U) ∧ �Tcolor(G:{(n1,n2) | True}, f:{}, U:{}) : ¬(U < U↑).

6.3.1 Parametrized Theories and their Applications

First, we detail how parametrized theories and their applications are processed.
The rewriting starts by performing a simple renaming such that every type and
symbol has a unique name.

Consider the following application ∗Tcolor(Graph, Homomorphism, Used) of the
theory Tcolor of Listing 6.1. In this application, the two predicates Graph

and Used have types (Node, Node) and (Color) respectively, while the function
Homomorphism has type Node → Color.

To translate this theory application, the implementation instantiates the body
of Tcolor as appropriate. From the signature σ(Tcolor) of theory Tcolor we derive
the substitutions of Table 6.1. Applying these to the body φTcolor , we get the
following instantiation for the symbols and types of theory Tcolor :
∀ x, y :: Node : Graph(x,y) ⇒ Homomorphism(x) 6= Homomorphism(y)
∧ ∀ c :: Color : Used(c) ⇔ (∃ x :: Node : Homomorphism(x) = c).

We can now replace the occurrence ∗Tcolor(Graph, Homomorphism, Used) by the
instantiated body.

IMPLEMENTATION 107

Table 6.1: Substitutions for the application ∗Tcolor(Graph, Homomorphism, Used

).

Original Substitution
G Graph

f Homomorphism

U Used

N Node

C Color

6.3.2 Quantifying over Variant Worlds

We now show how the implementation processes quantifications over variant
worlds and the unshadowing operator.

When encountering a quantification over variant worlds �T (S : s) : φ, we
introduce new variables for the arguments S, quantifying them universally
(existentially, for ♦ expressions).

For the variant world quantification from the chromatic coloring problem, �Tcolor

(Graph:{(n1,n2) | t}, Homomorphism:{}, Used:{}) : ¬(Used < Used↑), the
variables introduced are Graph’, Homomorphism’ and Used’.

From the signature of the theory T , we derive a set of substitutions for the
arguments, for the types in the signature σ(T), and for any arguments with the
unshadowing operator ↑ applied. Note that no further implementation support
is needed for the unshadowing operator.

For the signature of Tcolor , these substitutions are given by Table 6.2.

By applying these substitutions to the body φT and the formula φ, we get
new formula φTsub and φsub respectively. For our example, this would give the
following formulas:
(∀ x,y :: Node : Graph’(x,y) ⇒ Homomorphism’(x) 6= Homomorphism’(y))∧
(∀ c :: Color : Used’(c) ⇔ (∃ x :: Node : Homomorphism’(x) = c)).

¬(Used’ < Used).

Now, we must enforce the common core between the variant worlds considered
by the quantification. To this end, we introduce a formula ψlink , which encodes
the information in the common core sets as formulas that we call ‘linking
formula’. A common core of the form f : {(x1, . . . , xn) | ψ}, with f a function
of type T1, . . . , Tn → T , ψlink has linking formula ∀x1 :: T1 : . . . : ∀xn :: Tn :

108 A SECOND-ORDER PATTERN: INTEGRATING INFERENCES IN LOGIC

Table 6.2: Substitutions for the variant world quantification �Tcolor(Graph:{(n1

,n2)|t }, Homomorphism:{}, Used:{}):φ.

Original Substitution
G Graph’

G↑ Graph

f Homomorphism’

f↑ Homomorphism

U Used’

U↑ Used

N Node

C Color

ψ ⇒ f(x1, . . . , xn) = f ′(x1, . . . , xn). For the common core of a predicate P , the
same linking formula can be used, but with an equivalence (⇔) replacing the
equality (=).

For our example, the common coreset Graph:{(n1,n2)|t} translates to
the linking formula ∀n1, n2 :: Node : Graph(n1,n2) ⇔ Graph’(n1,n2).The
empty common core sets {} for Homomorphism and Used simply translate to t.

The full transformation can then be summarized as follows:

�T (S : s) : φ ∀S′ :: T : (φTsub
∧ ψlink)⇒ φsub.

♦T (S : s) : φ ∃S′ :: T : φTsub
∧ ψlink ∧ φsub.

For the example variant world quantification from the chromatic coloring problem
this becomes:

∀ Graph’ :: (Node, Node) : ∀ Homomorphism’ :: Node → Color :
∀ Used’ :: (Color) :(
(∀n1, n2 :: Node : Graph(n1,n2) ⇔ Graph’(n1,n2)) ∧

 (∀ x,y :: Node : Graph’(x,y) ⇒ Homomorphism’(x) 6= Homomorphism’(y))∧
 (∀ c :: Color : Used’(c) ⇔ (∃ x :: Node : Homomorphism’(x) = c))

)
⇒ ¬(Used’ < Used).

The resulting formula(s) are strictly second-order formulas and can be handled
by the grounder that was introduced in Chapter 4.

USE CASE: ZEBRA PUZZLE 109

6.4 Use case: Zebra Puzzle

As previously stated, theory applications and variant world quantifications can
express certain inferences in the language itself. One important advantage of
this is the possibility to continue reasoning on the result of these inferences.
The Zebra puzzle use case illustrates this advantage.

The Zebra puzzle, also known as the Einstein puzzle, is a well-known puzzle
where one is asked to infer from a number of statements, or clues, for a set of
persons of different nationality in what color house they live, what pet they
have, which brand of cigarettes they smoke etc., for example “The man who
smokes Chesterfields lives in the house next to the man with the fox”. The
Zebra Puzzle, and its variants are called called logic grid puzzles, and can be
modeled as a type of Constraint Satisfaction Problem (CSP) using the following
approach:

• Every property, e.g., nationality or cigarette brand, corresponds to a type.

• Every combination of two properties corresponds to a binary predicate,
e.g., NameBrand, over the two types that the properties represent.

• The clues are modeled as first-order sentences (constraints) over these
binary predicates.

• For every binary predicate, a sentence is added that expresses bijectivity:
every value of one property is related with exactly one value of the other
property.

• For every combination of three different binary predicates, a first-order
sentence expressing transitivity is added. Transitivity says, for example,
that “if the Englishman has a snail and lives in the red house, then the
snail is related to the red house as well”.

In recent years, Claes et al. [28, 16] have investigated how a system can produce
not only a solution of a logic grid puzzle, but also an easy-to-understand proof,
i.e., ‘a sequence of simple explanations’ [16]. Claes et al.’s system ZebraTutor
proceeds by first separating the different constraints in the logic grid puzzle
into different theories. ZebraTutor subsequently performs Minimal Unsatisfiable
Core extraction inference on combinations of these partial theories, guided by a
heuristic based on a cost function.

One disadvantage of this approach is that the heuristic does not guarantee
optimality with respect to the cost function. However, by considering simple
explanations as propagations from a subset of the theory, we can express the

110 A SECOND-ORDER PATTERN: INTEGRATING INFERENCES IN LOGIC

Table 6.3: Solution of the simple Pasta puzzle.

A
rr
ab

ia
ta

B
ol
og

ne
se

C
ar
bo

na
ra

P
en

ne

Fa
rf
al
le

Sp
ir
el
li

Andrea - - X X - -
Bart X - - - X -
Casper - X - - - X

Penne - - X
Farfalle X - -
Spirelli - X -

search for a simple explanation as a parametrized theory application, cfr. the
earlier discussed brave and cautious reasoning.

Example 4 (Pasta). Consider the (simple) example logic grid puzzle ‘Pasta’
with only three properties: person names (Andrea, Bart and Casper), choice of
Pasta (Penne, Farfalle and Spirelli), and choice of Sauce (Arrabiata, Bolognese
and Carbonara).

Furthermore, we are given the following four clues:

1. Andrea ate penne.
2. The person who ate penne, had carbonara sauce.
3. Bart ate penne or farfalle.
4. Spirelli was eaten with bolognese.

The solution of this puzzle is visualized in Table 6.3.

First, we define a theory representing the logic grid puzzle, for example TPasta
of Listing 6.8. The theory includes reification of the different constraints
representing the clues, the transitivity, and the bijectivity of the relations, by
introducting before each sentence φ an implication T(n) ⇒ φ. The reification of
these constraints allows manipulation of the theory used to derive propagations,
i.e., a constraint φ, expressed by T(n) ⇒ φ, is only active when the reification
literal T(n) is true.

It is easy to see that theory Tmain of Listing 6.9 simply expresses model
expansion over the full Tpasta theory, by activating every constraint, due to
Line 17.

Note that the output predicates of the theory application are always two-valued.
In the theory above, there is obviously only one correct solution for the entire

USE CASE: ZEBRA PUZZLE 111

Listing 6.8: Theory representing the Pasta logic grid puzzle
1 theory TPasta{
2 type Person.
3 type Pasta.
4 type Sauce.
5 type Tseitins.

7 PersonPasta :: (Person, Pasta).
8 PersonSauce :: (Person, Sauce).
9 PastaSauce :: (Pasta, Sauce).

10 T :: (Tseitins).

12 Person := {Andrea; Bart; Casper}.
13 Pasta := {Penne; Farfalle; Spirelli}.
14 Sauce := {Arrabiata; Bolognese; Carbonara}.
15 Tseitins := {1;2;3;4;5;6;7;8;9;10}.

17 // clues
18 T(1) ⇒ PersonPasta(Andrea, Penne).
19 T(2) ⇒ ∃ person :: Person : PersonPasta(person, Penne) ∧ PersonSauce(person, Carbonara).

20 T(3) ⇒ ∃ pasta :: Pasta : PersonPasta(Bart, pasta) ∧ (pasta = Penne ∨ pasta = Farfalle)
.

21 T(4) ⇒ PastaSauce(Spirelli, Bolognese).

23 // Transitivity
24 T(5) ⇒ ∀person :: Person : ∀pasta :: Pasta : ∀sauce :: Sauce : (PersonPasta(person,

pasta) ∧ PastaSauce(pasta, sauce)) ⇒ PersonSauce(person, sauce).
25 T(6) ⇒ ∀person :: Person : ∀pasta :: Pasta : ∀sauce :: Sauce : (PersonPasta(person,

pasta) ∧ PersonSauce(person, sauce)) ⇒ PastaSauce(pasta, sauce).
26 T(7) ⇒ ∀person :: Person : ∀pasta :: Pasta : ∀sauce :: Sauce : (PersonSauce(person,

sauce) ∧ PastaSauce(pasta, sauce)) ⇒ PersonPasta(person, pasta).

28 // Bijectivity and existence
29 T(8) ⇒ (∀p1, p2 :: Person : ∀ s1, s2 :: Sauce : (PersonSauce(p1,s1) ∧ PersonSauce(p2,s2

) ⇒ ((p1 = p2 ∧ s1 = s2) ∨ (p1 6= p2 ∧ s1 6= s2)))).
30 T(8) ⇒ ∀person :: Person : ∃ sauce :: Sauce : PersonSauce(person,sauce).
31 [. . .] //bijectivity and existence for the PersonPasta and PastaSauce predicates.
32 }

puzzle, but even when we deactivate certain constraints, we simply find multiple
two-valued results.

To go from model expansion to propagation, we need to:

• represent three-valued structures, as both for the ‘input’ of the propagation
and the ‘output’ of the propagation, and

• compare the three-valued and two-valued representations according to the
precision order ≤p.

A single predicate P in the structure can be represented in a three-valued way
by two predicates Pct and Pcf representing the known true and false subsets of
P .

112 A SECOND-ORDER PATTERN: INTEGRATING INFERENCES IN LOGIC

Listing 6.9: Theory Tmodelexpansion modeling model expansion over the pasta
puzzle

1 theory Tmodelexpansion {
2 type Person.
3 type Pasta.
4 type Sauce.
5 type Tseitins.

7 PersonPasta :: (Person, Pasta).
8 PersonSauce :: (Person, Sauce).
9 PastaSauce :: (Pasta, Sauce).

10 T :: (Tseitins).

12 Person := {Andrea; Bart; Casper}.
13 Pasta := {Penne; Farfalle; Spirelli}.
14 Sauce := {Arrabiata; Bolognese; Carbonara}.
15 Tseitins := {1;2;3;4;5;6;7;8;9;10}.

17 ∀ n :: Tseitins : T(n).
18 *TPasta(PersonPasta, PersonSauce, PastaSauce, T).
19 }

To compare two three-valued representations under the precision order ≤p, we
can simply compare the the true and false subsets separately using =<, i.e.,
Pct =< P ′ct ∧ Pcf =< P ′cf

1.

To compare a three-valued representation Pct, Pcf to a two-valued representation
of P ′, we introduce a theory T≤p,3V

(see Listing 6.10). This theory T≤p,3V

expresses that the two-valued predicate P ′ (with a two-valued representation P’)
is ≥p than a three-valued predicate P (represented by P_ct and P_cf). We can
equivalently state that P ′ (represented by P’) is consistent with P (represented
by P_ct and P_cf).

Listing 6.10: Theory that expresses that P ′ is ≥p than a three-valued predicate
P (represented by P_ct and P_cf.

1 theory T≤p,3V
 {

2 type T1.
3 type T2.

5 P_ct :: (T1, T2).
6 P_cf :: (T1, T2).
7 P' :: (T1, T2).

9 ∀ x :: T1 : ∀ y :: T2 : (P_ct(x,y) ⇒ P'(x,y)) ∧ (P_cf(x,y) ⇒ ¬P'(x,y)).
10 }

Now we can model propagation in the Pasta puzzle by the parametrized theory
Tpropagation, Listing 6.11. It takes as arguments 6 binary predicates forming

1Recall that =< on predicates corresponds to the subset relation ⊆

USE CASE: ZEBRA PUZZLE 113

a three-valued representation of the input structure for propagation, 6 binary
predicates forming a three-valued representation of the output of the propagation,
and a single predicate indicating which constraints were active. In Lines 30–38,
the theory expresses that the three-valued representation of the output is strictly
more precise than the three-valued representation of the input. Lines 40–49
subsequently express that, for the set T determining the active constraints, every
solution of the Pasta puzzle that extends the input structure must also extend
the output structure, i.e., the predicates representing the input structure and
the output structure respectively differ only in cautious consequences.

As the propagation inference is expressed in the language itself, we can now
continue reasoning on its results, e.g., we can express that there is no T’ < T of
tseitins that allows propagations2:
∗Tpropagation(. . ., T) ∧ �Tpropagation(. . ., T:{}) : ¬ (T < T↑)

When our proposed language is extended with aggregates (COUNT3, SUM4), and
with only minimal changes to the specification, we can instead compare the set
of active tseitins by cardinality or even using a weight function, e.g.
∗Tpropagation(. . ., T) ∧ �Tpropagation(. . ., T:{}) : COUNT{t :: Tseitins : T(t)}

 ≥ COUNT{t :: Tseitins : T↑(t)}.

This shows the flexibility offered by being able to express these inferences in
the language itself.

With the theory Tpropagation, given a three-valued representation of the
knowledge we already have, we can use parametrized theory application to
find consequences and a representation of their explanation (given by the true
tseitins T). By combining this with variant world quantifications, we can restrict
ourselves to finding consequences with explanations that are minimal w.r.t
some ordering such as subset minimality or cardinality, e.g., ‘simple explainable
consequences’ for the ZebraTutor.

2For readability, we have omitted the passing of the arguments that represent the input
and result of propagation.

3COUNT should be a built-in higher-order function on a set of domain elements; the elements
of this set are either specified by enumeration or as all possible bindings to a set of variables
that satisfy a given formula

4SUM should be a built-in higher-order function on a multiset; the elements of this multiset
are either specified by enumeration or by a term t with free variables. In the second case, the
multiset consists of all terms obtained by instantiating the free variables with those bindings
that satisfy the given formula.

114 A SECOND-ORDER PATTERN: INTEGRATING INFERENCES IN LOGIC

Listing 6.11: Theory Tpropagation modeling propagation over the Pasta puzzle
1 theory Tpropagation {
2 type Person.
3 type Pasta.
4 type Sauce.
5 type Tseitins.

7 // Representation of the three-valued input structure of propagation.
8 PersonPasta_ct :: (Person, Pasta).
9 PersonPasta_cf :: (Person, Pasta).

10 PersonSauce_ct :: (Person, Sauce).
11 PersonSauce_cf :: (Person, Sauce).
12 PastaSauce_ct :: (Pasta, Sauce).
13 PastaSauce_cf :: (Pasta, Sauce).

15 // Representation of the three-valued output structure of propagation.
16 PersonPasta_ct' :: (Person, Pasta).
17 PersonPasta_cf' :: (Person, Pasta).
18 PersonSauce_ct' :: (Person, Sauce).
19 PersonSauce_cf' :: (Person, Sauce).
20 PastaSauce_ct' :: (Pasta, Sauce).
21 PastaSauce_cf' :: (Pasta, Sauce).

23 T :: (Tseitins).

25 Person := {Andrea; Bart; Casper}.
26 Pasta := {Penne; Farfalle; Spirelli}.
27 Sauce := {Arrabiata; Bolognese; Carbonara}.
28 Tseitins := {1;2;3;4;5;6;7;8;9;10}.

30
31 PersonPasta_ct =< PersonPasta_ct' ∧ PersonPasta_cf =< PersonPasta_cf'.
32 PersonSauce_ct =< PersonSauce_ct' ∧ PersonSauce_cf =< PersonSauce_cf'.
33 PastaSauce_ct =< PastaSauce_ct' ∧ PastaSauce_cf =< PastaSauce_cf'.

35 PersonPasta_ct < PersonPasta_ct' ∨ PersonPasta_cf < PersonPasta_cf' ∨
36 PersonSauce_ct < PersonSauce_ct' ∨ PersonSauce_cf < PersonSauce_cf' ∨
37 PastaSauce_ct < PastaSauce_ct' ∨ PastaSauce_cf < PastaSauce_cf'.
38

40
41 ∀ PersonPasta :: (Person, Pasta) : ∀ PersonSauce :: (Person, Sauce) : ∀ PastaSauce :: (

Pasta, Sauce) :
42 (*TPasta(PersonPasta, PersonSauce, PastaSauce, T) ∧
43 *T≤p,3V

(PersonPasta_ct, PersonPasta_cf, PersonPasta) ∧
44 *T≤p,3V

(PersonSauce_ct, PersonSauce_cf, PersonSauce) ∧
45 *T≤p,3V

(PastaSauce_ct, PastaSauce_cf, PastaSauce)) ⇒
46 (*T≤p,3V

(PersonPasta_ct', PersonPasta_cf', PersonPasta) ∧
47 *T≤p,3V

(PersonSauce_ct', PersonSauce_cf', PersonSauce) ∧
48 *T≤p,3V

(PastaSauce_ct', PastaSauce_cf', PastaSauce)).
49
50 }

CONCLUSION 115

6.5 Conclusion

In Chapter 5, we looked at the practical expressivity of specification languages,
starting from the assertion that a lot of information was subject to duplication.
We preferred instead to express that same information in a more generic
way, leading to the introduction of templates and reducing duplication. We
identified second-order definitions as a very expressive language construct,
capable of abstracting over relations in much the same way as we expected from
templates, and thus defined the semantics of templates through second-order
definitions. However, the expressivity of second-order definitions also posed
a challenge, as the computational expressivity of specification languages such
as the FO(·) language of the IDP system is limited to existential second-order
or NP. Thus, we limited templates to specific second-order definitions that
increased the practical expressivity and not the computational expressivity.

In this chapter, we started from the SOGrounder, a grounder with second-order
logic as its specification language, a much more expressive language in itself,
however, still lacking the abstraction capabilities that we were looking for in
templates. However, in this chapter, we continued on the observation that, as
far as we could identify, the natural problems of a level higher than NP in the
polynomial hierarchy PH in fact were on that level because they (repeatedly, or
under negation) solved a problem one level lower. Often, though not necessarily
always, there is a certain level of self-similarity in play; knowledge about a
certain problem or concept can be expressed on a given level, but when we
in fact want the solution that is minimal by some criterium (e.g., chromatic
coloring), critical (e.g., actual causation or inconsistent cores) or unique,the
concepts raise in descriptive complexity [114]. The observation above is not
surprising if one considers the oracle-based description of PH.

Likewise, it seems closely linked to the secondary advantage of templates quoted
in Chapter 5, that even if a template is used only once, it can benefit readability
by grouping and naming constraints. This observed pattern in second-order
logic led us to the idea that theories, the logical object by which we would gather
the knowledge of any problem domain, were a prime candidate to semantically
define templates. In related work, Eiter et al. [47] already considered theories
as a form of abstraction and reuse when working on the DLVHEX system.
However, in the work on DLVHEX, such theories are handled by its the external
computation system, leading to separate solver calls.

We therefore started the chapter by providing some examples of problems that
to us, exhibit the pattern of self-similarity, together with the language constructs
that help us express them: parametrized theories, variant world quantifications
and common core expressions.

116 A SECOND-ORDER PATTERN: INTEGRATING INFERENCES IN LOGIC

We proceeded by the formalization of second-order logic extended with these new
language constructs. We defined their syntax and semantics, and show that, as
we would expect of templates, their introduction does not raise computational
expressivity. Subsequently, we detailed our implementation, the rewriting
mechanism to translate our new language constructs to standard second-order
logic as can be processed by the SOGrounder. Furthermore we detail a use case
that, to us, shows how in fact the language constructs can be used to integrate
well-known inferences in the language, possibly in slight, application-specific
variations, in a way that allows continued reasoning on the results.

Chapter 7

An Overview of Problems
with Second-Order
Constraints

In this chapter, we give a select overview of some problems in whose modelings
second-order constraints naturally arise. Making such a selection is, in its very
nature, a subjective task.

Thinking back to Immerman [78] result that second-order logic captures the
Polynomial Hierarchy PH, we know that every problem P expressible in second-
order logic can be polynomially transformed to deciding satisfiability of a k-QBF
formula. Thus, in some sense, the only problem one needs to consider is that of
deciding satisfiability of k-QBF. However, it is important to keep in mind that
the polynomial transformation does not necessarily provide a nice translation
of the domain of discourse and the terminology of P to k-QBF.

As our interest in supporting second-order logic stems from a desire to allow
for better knowledge representation, we place great importance on the domain
of discourse and the terminology associated with every problem. Therefore,
we focus in this overview on problems that are of interest because of their
simple and elegant natural language problem statements and/or because of
their relevance in literature from other fields, originating from theoretical study
or practical applications.

The problems in this overview can (and should be) considered supplementary
examples (in addition to the earlier discussed graph mining, strategic companies

117

118 AN OVERVIEW OF PROBLEMS WITH SECOND-ORDER CONSTRAINTS

Table 7.1: The ∗ operation on labels, modeling the relationship between a
directed edge and its start and end vertex.

l1 l2 l1 ∗ l2
+ + +
+ − −
− − +
− + −

and the examples of Chapter 6) motivating the choice to support second-order
logic; they can also be read as further examples of second-order modelings and
the pattern discussed in Chapter 6. Although these problems are intended to
provide (additional) motivation for adding support of second-order logic, we
only discuss them now because representing them properly depends heavily on
the additional constructs introduced in Chapter 6, or in some cases even the
addition of aggregates to the language.

The chapter consists of new, unpublished work.

Personal contribution: 100%.

7.1 Minimal Inconsistent Cores

The concept of Minimal Inconsistent Cores has been introduced by Gebser et
al. [63] to detect inconsistencies in biological networks that model polarity of
biochemical and genetic reactions.

Specifically, the networks are modeled by influence graphs [9], which are directed
graphs in which the directed edges are labeled with a sign (+/−). Semantically,
positive edges model activations, while negative edges model inhibitions. Based
on observations in experiments, one can subsequently label the nodes of a
network with a sign (+/−) as well, signifying increased respectively decreased
presence of the reactant represented by the vertex. We introduce a binary,
associative operation ∗ over labels that models the relationship between a
directed edge and its start and end vertices, whose definition is given by
Table 7.1.

Definition 53 (consistency). Consider a graph G with vertices V and directed
edges E, and a pair 〈lE , lV 〉 that consists of an edge-labeling function lE ::
E → {+/−} and a vertex-labeling function lV :: V → {+/−}. The pair
〈lE , lV 〉 is consistent with G on a vertex v if there is an edge (u, v) ∈ E s.t.
lV (v) = lV (u) ∗ lE(u, v) (See Table 7.1).

MINIMAL INCONSISTENT CORES 119

A pair 〈lE , lV 〉 is consistent with G if it is consistent with 〈V,E〉 on all vertices
v ∈ V .

It is possible to extend the notion of consistency to:

• disregard input vertices, i.e., vertices without incoming edges, representing
controlled variables in the experiments,

• extend the labeling to include orthogonal or non-significant influences.

A function that labels a set V ′ ⊂ V is called a partial vertex-labeling function,
referred to as lV,p. We say a function lV is a total extension of lV,p if lV labels
V and for all v ∈ V ′ lV (v) = lV,p(v). We use the same terminology for labelings
of edges.

Definition 54 (Minimal Inconsistent Core). Given an graph G and a
pair 〈lE,p, lV,p〉 of partial edge- and vertex-labeling functions, a set of vertices
IC is an inconsistent core of G iff every pair of total extending edge- and
vertex-labelings 〈lE , lV 〉 is inconsistent with G on some vertex i ∈ IC.

An inconsistent core IC is a minimal inconsistent core of G if none of its subsets
Y ⊂ IC is an inconsistent core of G.

In Listing 7.1, we model the concept of Minimal Inconsistent Cores, where
the minimal inconsistent core is represented by a set of vertices IC. First,
on Lines 15–26, we model the concept of total extension, representing partial
labelings as predicates. Defining the parametrized theory Consistent (Lines 28–
40), we model what it means for an edge- and vertex-labeling (edgelabel,
vertlabel respectively) to be consistent with a graph on a set IC.

On Lines 42–43, we impose the restriction that no extension of partialedge
and partialvert is consistent with the graph on the set of vertices IC.

Finally, we express the minimality condition on Lines 45–48; for every vertex
x in IC, the partial labelings can be extended such that the extensions are
consistent on all vertices in IC \ {x}, i.e., the set IC \ {x} is not an inconsistent
core. Note that this implies that no set S ⊂ IC \ {x} is an inconsistent core.

From Chapter 6, we know that the variant world quantifications of Lines 42
and 46 correspond to second order quantifications.

Note that the minimality condition could be expressed by quantifying over
the subsets of IC directly, and expressing that it is not an inconsistent core.
Formulated this way, however, it is clear that when IC is given, there is no
alternation of second-order quantifiers, only the conjunction of a second-order

120 AN OVERVIEW OF PROBLEMS WITH SECOND-ORDER CONSTRAINTS

universal and a second-order existential quantifier. This corroborates the
assertion by Gebser et al. [63] that determining whether a given set is a minimal
inconsistent core is in DP , i.e., the second level of the Boolean Hierarchy [114],
characterizing “languages that are the intersection of a language in NP and a
language in coNP”1 [114].

7.2 Optimal Stable Matching Problem

In their 1962 paper, Gale and Shapley [57] set out to solve the problem of
matching applicants to colleges, or bachelor men and women, formalizing what
became known as the Stable Matching Problem2. Given a number of men and
women, where each man has ranked the women according to his preference and
vice-versa, they wanted to match these men and women in such a way that the
resulting matching was stable, i.e., no pair of a man and a woman exists that
(1) are not matched but, (2) would prefer each other over their actual partners.
In other words, no two individuals can be paired such that both would feel that
they would “trade up”.

Definition 55 (Stable Matching). Given sets M and W , as well as total
preference orderings Pm :: (W,W), respectively Pw :: (M,M) for every m ∈M
and w ∈W , we call a bijection f :: M →W a stable matching if there exist no
mu, wu s.t. Pmu(wu, f(mu)) and Pwu(mu, f

−1(wu)).

The problem is of specific interest to a knowledge representation approach
(e.g., the study by [31]) as there exist many different variations; some variations
introduce ties in the ordering, others introduce the possibility to prefer remaining
unmatched above some potential partners. Faced with these variations, an
elaboration tolerant approach based on declarative modeling languages has
significant advantages over specialized algorithms.

Another aspect that can vary is when a stable matching is considered optimal.
As many different stable matchings can exist, one can associate with each
matching a cost and find the stable matching that minimizes this cost.

Definition 56 (Matching cost). Consider the total preference orderings Pm
and Pw. The cost cm(f) of an individual pairing (m, f(m)) is equal to the
number of partners m would prefer to f(m). The cost cw(f) of a pairing
(f−1(w), w) is equal to the number of partners w would prefer to f−1(w).

1Note that this implies NP, coNP ⊆ DP ⊆ ∆P
2 .

2Or sometimes “Stable Marriage Problem”.

OPTIMAL STABLE MATCHING PROBLEM 121

Listing 7.1: Specification of the Minimal Inconsistent Cores problem.
1 type Vertices.
2 type Label.

4 edge :: (Vertices, Vertices).
5 IC :: (Vertices).
6 partialedge :: (Vertices, Vertices, Label).
7 partialvert :: (Vertices, Label).
8 combine :: Label, Label → Label.
9 ledge :: Vertices, Vertices → Label.

10 lvert :: Vertices → Label.

12 Label := {pos;neg}.
13 combine := {pos,pos 7→ pos; pos,neg 7→ neg; neg,pos 7→ neg; neg,neg 7→ pos}.

15 theory Extends {
16 type Vertices.
17 type Label.

19 partialedge :: (Vertices, Vertices, Label).
20 partialvert :: (Vertices, Label).
21 edgelabel :: Vertices, Vertices → Label.
22 vertlabel :: Vertices → Label.

24 ∀ x, y :: Vertices : ∀ l :: Label : (partialedge(x,y,l) ⇒ edgelabel(x,y)=l).
25 ∀ x :: Vertices : ∀ l :: Label : (partialvert(x,l) ⇒ vertlabel(x)=l).
26 }

28 theory Consistent {
29 type Vertices.
30 type Label.

32 IC :: (Vertices).
33 edge :: (Vertices, Vertices).
34 edgelabel :: Vertices, Vertices → Label.
35 vertlabel :: Vertices → Label.
36 combine :: Label, Label → Label.

38 ∀ v :: Vertices : IC(v) ⇒
39 ∃ n :: Vertices : (edge(n,v)) ∧ vertlabel(v) = combine(vertlabel(n), edgelabel(n,v)).

40 }

42 �Extends(partialedge:{x,y,z|true}, partialvert:{x,y|true}, ledge:{}, lvert:{}) :
43 ¬ *Consistent(IC,edge,ledge,lvert,combine).

45 ∀ x :: Vertices : IC(x) ⇒
46 (♦Extends(partialedge:{a,b,c | True}, partialvert:{a,b | True}, ledge:{}, lvert:{}) :
47 ∀ v :: Vertices : IC(v) ∧ (v 6= x) ⇒
48 ∃ n :: Vertices : (edge(n,v)) ∧ lvert(v) = combine(ledge(n,v), lvert(n))).

122 AN OVERVIEW OF PROBLEMS WITH SECOND-ORDER CONSTRAINTS

The total cost cM (f) of a matching f is given by
∑
m∈M

cm(f), while the total

cost cW (f) is given by
∑
w∈W

cw(f).

Traditionally, the stable matching f with the least cost cM (f) is called the
optimal stable matching. However, one can optimize stable matchings with
respect to other cost metrics such as the egalitarian cost cM (f) + cW (f), the
sex-equal cost |cM (f)− cW (f)|, or even the number of unmatched m’s.

Over the years, these different variations have been shown to model many real
world problems, from college admissions [57] over economic applications such
as auctioning [12] to the medical problem of kidney exchange [122].

The traditional, simple problem without ties or incomplete matchings can be
solved efficiently. Likewise, finding the optimal matching w.r.t. the penalty for
M (or, by symmetry, W) is polynomial. However, optimizing the sex-equal cost
(|cM (f)− cW (f)|) is NP-hard [106].

In Listing 7.2, we model the optimal stable matching problem for sex-equal
cost. Note that this specification assumes the addition of a SUM and COUNT

aggregate to the language. Total preference orders are represented ternary
predicates Pm and Pw. The atom P(m,w1,w2) should be read as ‘m prefers w1 to
w2’.

Lines 11–27 define a parametrized theory expressing that match and imatch

represent a stable matching with sex-equal cost cost for preference orders Pm
and Pw.

On Line 29, we express that match and imatch must be a stable matching
for Pm and Pw with cost cost. Furthermore, we express that every alternative
matching for the same preference orderings has a cost equal or higher than
cost using a variant world quantification. In Chapter 6, we have shown that
such variant world quantification corresponds to a set of universal second-order
quantifications.
Listing 7.2: Specification of the sex-equal optimal stable matching problem.

1 type Men.
2 type Women.
3 type Cost as int.

5 Pm :: (M,W,W).
6 Pw :: (W,M,M).
7 match :: M → W.
8 imatch :: W → M.
9 cost :: Cost.

11 theory Stable {
12 type M.
13 type W.

DETERMINING PATH VAPNIK-CHERVONENKIS DIMENSION 123

14 type Cost as int.

16 Pm :: (M,W,W).
17 Pw :: (W,M,M).
18 match :: M → W.
19 imatch :: W → M.
20 cost :: Cost.

22 ∀ m :: M : ∀ w :: W : match(m)=w ⇔ imatch(w)=m. //match and imatch are eachothers
inverse.

24 ∀ m :: M : ∀ w :: W : (¬Pm(m,w,match(m)) ∨ ¬Pw(w,m, imatch(w))).

26 ∃ c :: Cost : c = SUM{m :: M : t : COUNT{w :: W : Pm(m,w,match(m)}} - SUM{w :: W : t :
COUNT{m :: M : Pw(w,m,imatch(w)}} ∧ (cost = c ∨ (cost = -c ∧ c < 0)).

27 }

29 ∗Stable(Pm,Pw,match,imatch,cost) ∧ �Stable(Pm:{(m,w,w2) | t}, Pw:{(w,m,m2) | t}, match:{},
 imatch:{}, cost:{}) : cost >= cost↑.

7.3 Determining Path Vapnik-Chervonenkis Di-
mension

The Vapnik-Chervonenkis Dimension [138, 94] (VC-dimension) is a complexity
measure originating from analysis of statistical functions. It is of use in, for
example, Learning theory [14] and, when specialized to graphs, computational
geometry and network theory, where it is linked to the number of nodes needed
to be monitored to detect failures such as network splits [90, 127].

Definition 57 (Path Vapnik-Chervonenkis Dimension (for
graphs [94])). Given an undirected graph G, a subset X of the vertices of G
is path-shattered iff for every subset Y ⊆ X of at least size 2, it holds that
there is a sequence of edges from G joining distinct vertices (called a path) that
contains every vertex z ∈ Y but contains no z′ ∈ X \ Y .

The cardinality of the largest path-shattered subset X is called the path VC-
dimension of G.

The above definition of Path VC-Dimension is generalized into P VC-dimensions
by considering P -shattering where P can be trees, cliques, etc. We focus on the
VC-Dimension induced by paths as deciding whether the path VC-dimension
of a graph G is higher than k is ΣP3 -complete [125]. Other inducing structures
such as trees or neighbourhoods allow for simplifications, thereby lowering the
complexity.

124 AN OVERVIEW OF PROBLEMS WITH SECOND-ORDER CONSTRAINTS

As an example of path VC-dimension, we discuss the path VC-dimension when
the graph G is a tree of size > 2: for these graphs, the path VC-dimension is
known to be two [94].
Example 5. Given a tree G of size > 2, consider any subset X consisting of at
least three vertices V1, V2 and V3. We will show that X cannot be path-shattered.

Suppose that X is path-shattered, then by Definition 57, there must exist a
path containing V1, V2, and V3. Without loss of generality (by renaming and
trimming), we obtain a path from V1 to V3 going through V2. As paths in a tree
are unique, this is the only path from V1 to V3.

By Definition 57, for Y = {V1, V3}, there must exist a path that contains V1
and V3 but does not contain any vertex from X \ {V1, V3}. However, every path
containing V1 and V3 must extend the unique path from V1 to V3. This unique
path contains V2, and V2 ∈ X \ {V1, V3}, leading to contradiction. Therefore,
X cannot be path-shattered.

It is trivial to see that there exists a set X of size two that is path-shattered,
thus the path VC-dimension of any tree is two.

Listing 7.3 shows a specification of path-shattered sets. The specification
defines a parametrized theory PathIn (Lines 6–21) with an (undirected) graph
graph, a path subpath and a unary predicate onPath as its arguments. The
predicate onPath provides a convenient way to refer to the set of all vertices
contained in the path.

Using the parametrized theorie PathIn, Lines 23–30 specify that for every
subset Y of VC_Set that has a size of at least two, there exists a path that
contains all vertices of Y but none of VC_Set \ Y.

Listing 7.3: Specification of path-shattered sets..
1 type Vertices.

3 G_Edge :: (Vertices, Vertices).
4 VC_Set :: (Vertices).

6 theory PathIn {
7 type Vertices.

9 graph :: (Vertices, Vertices).
10 subpath :: (Vertices, Vertices).
11 onPath :: (Vertices).

13 ∀ x :: Vertices : onPath(x) ⇔ ∃ y :: Vertices : subpath(x,y) ∨ subpath(y,x).
14 ∀ x, y :: Vertices : subpath(x,y) ⇒ graph(x,y) ∨ graph(y,x). // Subpath is a subset of

the edges of graph
15 ∀ x, y :: Vertices : subpath(x,y) ⇒ ¬subpath(y,x). // No edge reuse.
16 ∀ x, y, z :: Vertices : subpath(x,y) ∧ subpath(x,z) ⇒ y=z. // All vertices have at

most one predecessor
17 ∀ x, y, z :: Vertices : subpath(y,x) ∧ subpath(z,x) ⇒ y=z. // All vertices have at

most one successor

SECURE SETS 125

Figure 7.1: An example of a graph in which the shaded vertices form a secure
set, while the unshaded vertices do not.

18 ∀ x, y :: Vertices : (onPath(x) ∧ onPath(y) ∧ ∀ z :: Vertices : ¬subpath(z,x) ∧ ¬
subpath(z,y)) ⇒ x=y. // Only one vertex in the path has no predecessor (i.e., the
start vertex).

19 ∀ x, y :: Vertices : (onPath(x) ∧ onPath(y) ∧ ∀ z :: Vertices : ¬subpath(x,z) ∧ ¬
subpath(y,z)) ⇒ x=y. // Only one vertex in the path has no successor (i.e., the end
vertex).

20 ∃ earlier :: (Vertices, Vertices) : ∀ x, y :: Vertices : (subpath(x,y) ⇒ (earlier(x,y)
 ∧ ∀ z :: Vertices : earlier(y,z) ⇒ earlier(x,z))) ∧ (¬earlier(x,y) ∨ ¬earlier(y,
x)). // There exists an ordering respected by the edge sequences; no cycles can
exist.

21 }

23 ∀ Y :: (Vertices) :
24 ((∀x :: Vertices : Y(x)⇒VC_Set(x)) ∧ (∃ x, y :: Vertices : Y(x) ∧ Y(y) ∧ x 6=y)) ⇒
25 ∃ subpath :: (Vertices, Vertices) :
26 ∃ onPath :: (Vertices) :
27 *PathIn(G_Edge, subpath, onPath) ∧
28 (∀ x :: Vertices :
29 (Y(x) ⇒ onPath(x)) ∧
30 ((VC_Set(x) ∧ ¬Y(x)) ⇒ ¬onPath(x))).

7.4 Secure Sets

The concept of secure sets in undirected graphs, introduced by Brigham et
al. [22], builds upon the earlier concept of defensive alliances [96], i.e., any set of
vertices such that for every vertex x in the alliance, the majority of its neighbours
are also in the alliance. Applications include clustering in data mining [74],
specific examples of which include modeling of political or economical landscapes,
or finding (online) communities [54].

We follow a characterization of secure sets of Bliem and Woltran [13] in terms of
closed neighbourhoods, i.e., the closed neighbourhood N [Y] of a set Y consists
of Y together with all vertices adjacent to Y .

Definition 58 (Secure Sets [13]). Given an undirected graph G, a subset
SS of its vertices is a secure set if for every subset Y ⊆ SS, the comparison
|N [Y] ∩ SS| ≥ |N [Y] \ SS| holds.

A careful reader will note the similarity between secure sets and the Vapnik-
Chervonenkis dimension for neighbourhoods.

126 AN OVERVIEW OF PROBLEMS WITH SECOND-ORDER CONSTRAINTS

Example 6. It is easy to see that in Figure 7.1, the shaded vertices form a
secure set. The unshaded vertices, however, do not.

The problem of determining whether a secure set exists of size |SS| ≤ k is
ΣP2 -complete [13].

In Listing 7.4, we have modeled secure sets. Note that this specification
assumes the addition of a COUNT aggregate to the language. Line 6 contains a
second-order universal quantification.

Listing 7.4: Specification of the Secure Sets problem.
1 type Vertices.

3 Edge :: (Vertices, Vertices).
4 SS :: (Vertices).

6 ∀ Y :: (Vertices) : (∀x :: Vertices : Y(x) ⇒ SS(x)) ⇒
7 COUNT{x :: Vertices : SS(x) ∧ (Y(x) ∨ (∃ y :: Vertices : Y(y) ∧ (Edge(y,x) ∨ Edge(x

,y))))} >=
8 COUNT{x :: Vertices : ¬SS(x) ∧ (∃ y :: Vertices : Y(y) ∧ (Edge(y,x) ∨ Edge(x,y)))}.

10 /*
11 Note that (Y(x) ∨ (∃ y :: Vertices : Y(y) ∧ (Edge(y,x) ∨ Edge(x,y)))) describes the
12 closed neighborhood of Y. In the second aggregate, we can drop Y(x) from this expression
13 as ∀ x : Y(x) ⇒ SS(x).
14 */

Note that a naive encoding could also include an existential quantifier over
neighbourhoods. Instead, our encoding expresses the constraint involving
neighbourhoods in terms of the subset X (cfr. to the earlier statement that the
additional structure of neighbourhoods reduces the complexity of determining
neighbourhood VC-dimension compared to that of path VC-dimension).

7.5 Conclusion

In this chapter, we provided a selection of interesting problems in whose
modelings second-order constraints naturally arise. These problems and their
models serve as a motivation to support second-order logic.

While these modelings can be written without using the language constructs
introduced in Chapter 6, we believe that they are easier to represent when
making use of language constructs such as parametrized theories and variant
world quantifications. As a result, these motivational examples are included
only after these language constructs have been introduced, allowing us to greatly
simplify their representation.

Chapter 8

Conclusion

In this thesis, we set out to improve the level of abstraction possible in knowledge
specification languages. Specifically, we wanted to advance both computational
expressivity as well as practical expressivity of specification languages; the first
focusses on breadth, complexity-wise, of problems that are expressible in a
specification language while the other considers the ease of expression.

Both are important; for practical expressivity simply consider how tiresome it
can be to specify knowledge without using functions, even though functionality
can easily be encoded. For computational expressivity, one can consider the
set of example problems of Chapter 7, which shows a selection of interesting
problems with complexities starting on the second level of the Polynomial
Hierarchy and higher.

We started in Chapter 3 with a Knowledge Representation based analysis of
the graph mining problem, wanting to make clear the merits of second-order
and higher-order logic. We argued that the problem, as a natural variant
of frequent pattern mining, inherently requires expressivity on a level above
NP as graphs represent structures more complex than single items or sets of
items. Specifically, expressing the (lack of) matchings with examples requires a
language capable of expressing ΣP

2 constraints, such as second-order logic or
Answer Set Programming (ASP), albeit through the very opaque saturation
technique.

Furthermore, the chapter discussed how the problem would benefit from a
support for higher-order, representation wise. It detailed how these higher-order
elements of the problem can instead be encoded by introducing an identity
through a set of identifiers and resorting to tagged unions, reminiscent to

127

128 CONCLUSION

the technique of defunctionalization in systems based on lambda calculus. A
takeaway observation can be that higher-order concepts, when they occur in
limited sized sets, can be translated away. Finally, an ad-hoc experiment was
set up to test the hypothesis that through its added expressivity, even though
it can be translated away, a specification that defers such a translation to the
solving system, can be beneficial to solving performance.

InChapter 4, we introduced a typed second-order language and the SOGrounder
system that grounds this language to Quantified Boolean Formulas (QBF). We
detailed the underlying implementation, translating second-order logic into both
common input languages for such solvers, QDimacs and QCIR. Experiments
show that the approach of grounding to QBF promises performance that can
compete with Answer Set Programming (ASP) solvers, without the need for
complex and nontransparent encoding techniques such as saturation. Continuing
research could investigate how to port additional techniques such as ground
with bounds [143] to a system supporting second-order logic.

By allowing output in both QDimacs format, which requires a conjunctive
normal form, and QCIR format from the same specification, we also contribute
to QBF solver research with a tool to easily specify problems and study the
impact of tseitinization.

In Chapter 5, we summarized work performed earlier in collaboration with I.
Dasseville [35], introducing a formal semantics for templates in specification
languages and logic programming by linking them to second-order inductive
definitions. Furthermore it discussed a restriction to templates which do not
increase expressivity with respect to existential second-order. Chapter 6 built
on this work by starting from the more expressive second-order logic as supported
by the SOGrounder from Chapter 4 and the observation of a recurrent pattern
in second-order logic specifications: a dependency on well-known concepts with
their own complexity, often with some self-similarity.

To support this pattern, we proposed new language constructs, essentially
suggesting an alternative view on templates. Specifically, we proposed
parametrized theories, variant world quantifications and common core
expressions. Having defined their syntax and semantics, we discussed their
expressivity and detailed our implementation translating them to standard
second-order logic specifications fit for the SOGrounder of Chapter 4. We note
that templates for second-order logic allow the integration of many well-known
inferences in the language, in a way that allows continued reasoning on their
results.

In Chapter 7 we offered a much-needed overview of naturally occurring
problems on higher levels of the Polynomial Hierarchy, which hopefully convinces

FUTURE WORK 129

anyone skeptical of increasing the expressivity of specification languages that
plenty of problems are located on higher levels of the hierarchy that are of
interest to users and designers of specification languages. These problems served
as a motivation and inspiration to build a specification language supporting
second-order logic, and now serve as an illustration of the concepts introduced
in Chapter 6.

8.1 Future Work

We identify some open lines of future research on the ideas presented in this
text.

Looking at the problems introduced in Chapter 3 and Chapter 4, we saw
two problems, graph mining and strategic companies, where a good problem
specification used not only second-order logic but also higher-order logic aspects,
specifically in the representation of example graphs and controlling sets. While
the tagged union can serve to encode the problem, it remains only an encoding
and, as argumented in Chapter 3, it is prone to mistakes. A general approach
for such specifications by performing the necessary rewrites is needed. However,
such an approach is far from trivial. Open challenges with a system based on
rewriting using the tagged union approach are:

• Introducing the correct number of tags when higher-order predicates are
searched instead of given as input. Extending the domain with tags for
every possible argument predicate leads to very large domains.

• Distinguishing between higher-order specifications that use intentional
semantics (while meta-programming, for example) versus extensional
semantics.

The SOGrounder introduced in Chapter 4 showed promising results on the
strategic companies problem, w.r.t. ASP solvers. However, as mentioned in
Chapter 4, extending the benchmark set is an important next step towards
investigating the competitiveness of the approach taken; furthermore, only by
starting from an expanded benchmark set can one accurately judge the effects of
porting existing optimizations such as Ground-With-Bounds or Lazy Grounding
in grounding techniques from first-order logic systems to systems supporting
second-order logic.

Furthermore, as short-term future work, an implementation of aggregates is in
order so that the SOGrounder introduced in Chapter 4 can be tested on the
graph mining specification of Chapter 3.

130 CONCLUSION

In Chapter 6, a study of the performance overhead of parametrized theories
and possible optimizations is undoubtedly of further interest.

Furthermore, we imposed the restriction of a stratification on parametrized
theories, prohibiting self- and mutual-recursion. Without any restrictions, it is
clear that the rewriting procedure underlying the implementation would not
necessarily terminate. It would, however, definitely be interesting to allow at
least some form of recursion; parametrized theories that support this would
allow the modeling of problems where the number of second-order quantifier
alternations is dependent on the input. Specifically, many specifications of
general games require such features, as explored in a recent workshop paper [5].

A final possible extension on the work of parametrized theories lies in writing
generally applicable templates. Consider, for example, the parametrized theory
T ≤p,3V

introduced in the Pasta Puzzle of Chapter 6. While such a template
can be useful regardless of the arity of the predicates involved (as long as they
have the same arity), this specific template is fixed to arity 2. It is an open
question whether many parametrized theories exist that share the same problem,
but the existence of variadic templates in imperative languages such as C++
suggests that the question at least warrants further research.

Bibliography

[1] Abramson, H., and Rogers, H. Meta-programming in Logic
Programming. MIT Press, 1989.

[2] Abrial, J.-R. The B-Book. Cambridge University Press, 1996.

[3] Abrial, J.-R. Modeling in Event-B: System and Software Engineering.
Cambridge University Press, 2010.

[4] Aoga, J. O. R., Guns, T., and Schaus, P. An efficient algorithm
for mining frequent sequence with constraint programming. In Machine
Learning and Knowledge Discovery in Databases - European Conference,
ECML PKDD 2016, Riva del Garda, Italy, September 19-23, 2016,
Proceedings, Part II (2016), P. Frasconi, N. Landwehr, G. Manco, and
J. Vreeken, Eds., vol. 9852 of Lecture Notes in Computer Science, Springer,
pp. 315–330.

[5] Arteche, N., and van der Hallen, M. A formal language for
QBF family definitions. In Proceedings of the International Workshop on
Quantified Boolean Formulas and Beyond (2020 (accepted)).

[6] Baader, F., Calvanese, D., McGuinness, D. L., Nardi, D., and
Patel-Schneider, P. F., Eds. The Description Logic Handbook: Theory,
Implementation, and Applications. Cambridge University Press, 2003.

[7] Babai, L. Graph isomorphism in quasipolynomial time. CoRR
abs/1512.03547 (2015).

[8] Baral, C., Dzifcak, J., and Takahashi, H. Macros, macro calls
and use of ensembles in modular answer set programming. In Logic
Programming, 22nd International Conference, ICLP 2006, Seattle, WA,
USA, August 17-20, 2006, Proceedings (2006), pp. 376–390.

131

132 BIBLIOGRAPHY

[9] Baudier, A., Fages, F., and Soliman, S. Graphical requirements for
multistationarity in reaction networks and their verification in biomodels.
CoRR abs/1809.08891 (2018).

[10] Beyersdorff, O., Chew, L., and Janota, M. Extension variables in
QBF resolution. In Beyond NP, Papers from the 2016 AAAI Workshop,
Phoenix, Arizona, USA, February 12, 2016 (2016).

[11] Biard, T., Mauff, A. L., Bigand, M., and Bourey, J. P. Separation
of decision modeling from business process modeling using new "decision
model and notation" (DMN) for automating operational decision-making.
In Risks and Resilience of Collaborative Networks - 16th IFIP WG 5.5
Working Conference on Virtual Enterprises, PRO-VE 2015, Albi, France,
October 5-7, 2015, Proceedings (2015), pp. 489–496.

[12] Bichler, M. Market Design. Cambridge University Press, 2017.

[13] Bliem, B., and Woltran, S. Complexity of secure sets. Algorithmica
80, 10 (2018), 2909–2940.

[14] Blumer, A., Ehrenfeucht, A., Haussler, D., and Warmuth,
M. K. Learnability and the vapnik-chervonenkis dimension. J. ACM 36,
4 (1989), 929–965.

[15] Bodenreider, O. The unified medical language system (umls):
integrating biomedical terminology. Nucleic Acids Research 32, 1 (01
2004), D267–D270.

[16] Bogaerts, B., Gamba, E., Claes, J., and Guns, T. Step-wise
explanations of constraint satisfaction problems. In Proceedings of the
Twenty-fourth European Conference on Artificial Intelligence, European
Conference on Artificial Intelligence, 2020 (accepted for publication)
(2020).

[17] Bogaerts, B., Janhunen, T., and Tasharrofi, S. Solving QBF
instances with nested SAT solvers. In Beyond NP, Papers from the 2016
AAAI Workshop, Phoenix, Arizona, USA, February 12, 2016. (2016),
A. Darwiche, Ed., vol. WS-16-05 of AAAI Workshops, AAAI Press.

[18] Bogaerts, B., Jansen, J., Bruynooghe, M., De Cat, B.,
Vennekens, J., and Denecker, M. Simulating dynamic systems
using linear time calculus theories. Theory Pract. Log. Program. 14, 4-5
(2014), 477–492.

[19] Bonatti, P. A. Abduction, ASP and open logic programs. In 9th
International Workshop on Non-Monotonic Reasoning (NMR 2002), April
19-21, Toulouse, France, Proceedings (2002), pp. 184–190.

BIBLIOGRAPHY 133

[20] Bowen, J. P. Formal Specification and Documentation using Z.
International Thomson Computer Press, 1996.

[21] Brewka, G., Delgrande, J. P., Romero, J., and Schaub, T. asprin:
Customizing answer set preferences without a headache. In AAAI (2015),
AAAI Press, pp. 1467–1474.

[22] Brigham, R. C., Dutton, R. D., and Hedetniemi, S. T. Security
in graphs. Discret. Appl. Math. 155, 13 (2007), 1708–1714.

[23] Bruynooghe, M., Blockeel, H., Bogaerts, B., De Cat, B., De
Pooter, S., Jansen, J., Labarre, A., Ramon, J., Denecker, M.,
and Verwer, S. Predicate logic as a modeling language: modeling
and solving some machine learning and data mining problems with IDP3.
Theory and Practice of Logic Programming (TPLP) 15, 6 (2015), 783–817.

[24] Cadoli, M., Eiter, T., and Gottlob, G. Default logic as a query
language. IEEE Trans. Knowl. Data Eng. 9, 3 (1997), 448–463.

[25] Calimeri, F., Faber, W., Gebser, M., Ianni, G., Kaminski, R.,
Krennwallner, T., Leone, N., Maratea, M., Ricca, F., and
Schaub, T. Asp-core-2 input language format. Theory Pract. Log.
Program. 20, 2 (2020), 294–309.

[26] Charalambidis, A., Rondogiannis, P., and Symeonidou, I.
Approximation fixpoint theory and the well-founded semantics of higher-
order logic programs. Theory Pract. Log. Program. 18, 3-4 (2018), 421–437.

[27] Chen, W., Kifer, M., and Warren, D. S. Hilog: A foundation for
higher-order logic programming. The Journal of Logic Programming 15,
3 (1993), 187–230.

[28] Claes, J., Bogaerts, B., Canoy, R., Gamba, E., and Guns, T.
Zebratutor: Explaining how to solve logic grid puzzles. In Proceedings
of the 31st Benelux Conference on Artificial Intelligence (BNAIC 2019)
and the 28th Belgian Dutch Conference on Machine Learning (Benelearn
2019), Brussels, Belgium, November 6-8, 2019 (2019).

[29] Clark, K. L. Negation as failure. In Logic and Data Bases, Symposium
on Logic and Data Bases, Centre d’études et de recherches de Toulouse,
France, 1977 (1977), pp. 293–322.

[30] Clarke, E. M., Emerson, E. A., and Sistla, A. P. Automatic
verification of finite-state concurrent systems using temporal logic
specifications. ACM Trans. Program. Lang. Syst. 8, 2 (1986), 244–263.

134 BIBLIOGRAPHY

[31] Clercq, S. D., Schockaert, S., Cock, M. D., and Nowé, A.
Solving stable matching problems using answer set programming. Theory
Pract. Log. Program. 16, 3 (2016), 247–268.

[32] Cuteri, B., Dodaro, C., Ricca, F., and Schüller, P. Constraints,
lazy constraints, or propagators in ASP solving: An empirical analysis.
Theory and Practice of Logic Programming (TPLP) 17, 5-6 (2017), 780–
799.

[33] Dantsin, E., Eiter, T., Gottlob, G., and Voronkov, A.
Complexity and expressive power of logic programming. ACM Comput.
Surv. 33, 3 (2001), 374–425.

[34] Dao-Tran, M., Eiter, T., Fink, M., and Krennwallner,
T. Modular nonmonotonic logic programming revisited. In Logic
Programming, 25th International Conference, ICLP 2009, Pasadena, CA,
USA, July 14-17, 2009. Proceedings (2009), pp. 145–159.

[35] Dasseville, I., van der Hallen, M., Janssens, G., and Denecker,
M. Semantics of templates in a compositional framework for building
logics. Theory and Practice of Logic Programming (TPLP) 15, 4-5 (2015),
681–695.

[36] De Cat, B., Bogaerts, B., Bruynooghe, M., Janssens, G., and
Denecker, M. Predicate logic as a modeling language: the IDP system.
In Declarative Logic Programming: Theory, Systems, and Applications.
2018, pp. 279–323.

[37] De Cat, B., Bogaerts, B., Devriendt, J., and Denecker, M.
Model expansion in the presence of function symbols using constraint
programming. In 25th IEEE International Conference on Tools with
Artificial Intelligence, ICTAI 2013, Herndon, VA, USA, November 4-6,
2013 (2013), pp. 1068–1075.

[38] De Cat, B., Denecker, M., Bruynooghe, M., and Stuckey, P. J.
Lazy model expansion: Interleaving grounding with search. J. Artif. Intell.
Res. 52 (2015), 235–286.

[39] De Raedt, L., Guns, T., and Nijssen, S. Constraint programming
for itemset mining. In ACM SIGKDD (2008), pp. 204–212.

[40] Demaine, E. D. Playing games with algorithms: Algorithmic
combinatorial game theory. In Mathematical Foundations of Computer
Science 2001, 26th International Symposium, MFCS 2001 Marianske
Lazne, Czech Republic, August 27-31, 2001, Proceedings (2001), pp. 18–
32.

BIBLIOGRAPHY 135

[41] Denecker, M., Bruynooghe, M., and Vennekens, J. Approximation
fixpoint theory and the semantics of logic and answers set programs. In
Correct Reasoning - Essays on Logic-Based AI in Honour of Vladimir
Lifschitz (2012), pp. 178–194.

[42] Denecker, M., and Vennekens, J. The well-founded semantics is the
principle of inductive definition, revisited. Chitta, Baral, pp. 1–10.

[43] Denecker, M., and Vennekens, J. The well-founded semantics is the
principle of inductive definition, revisited. In Principles of Knowledge
Representation and Reasoning: Proceedings of the Fourteenth International
Conference, KR 2014, Vienna, Austria, July 20-24, 2014 (2014).

[44] Eiter, T., Fink, M., Ianni, G., Krennwallner, T., Redl, C., and
Schüller, P. A model building framework for answer set programming
with external computations. Theory and Practice of Logic Programming
(TPLP) 16, 4 (2016), 418–464.

[45] Eiter, T., and Gottlob, G. On the computational cost of disjunctive
logic programming: Propositional case. Ann. Math. Artif. Intell. 15, 3-4
(1995), 289–323.

[46] Eiter, T., Ianni, G., and Krennwallner, T. Answer set
programming: A primer. In Reasoning Web (2009), vol. 5689 of Lecture
Notes in Computer Science, Springer, pp. 40–110.

[47] Eiter, T., Krennwallner, T., and Redl, C. Hex-programs with
nested program calls. In Applications of Declarative Programming and
Knowledge Management - 19th International Conference, INAP 2011,
and 25th Workshop on Logic Programming, WLP 2011, Vienna, Austria,
September 28-30, 2011, Revised Selected Papers (2011), pp. 269–278.

[48] Eiter, T., and Polleres, A. Towards automated integration of guess
and check programs in answer set programming: a meta-interpreter and
applications. Theory Pract. Log. Program. 6, 1-2 (2006), 23–60.

[49] Elseidy, M., Abdelhamid, E., Skiadopoulos, S., and Kalnis, P.
Grami: Frequent subgraph and pattern mining in a single large graph.
Proc. VLDB Endow. 7, 7 (Mar. 2014), 517–528.

[50] Etherington, D. W. Relating default logic and circumscription. In
Proceedings of the 10th International Joint Conference on Artificial
Intelligence. Milan, Italy, August 23-28, 1987 (1987), J. P. McDermott,
Ed., Morgan Kaufmann, pp. 489–494.

136 BIBLIOGRAPHY

[51] Etherington, D. W., and Crawford, J. M. Toward efficient default
reasoning. In Proceedings of the Thirteenth National Conference on
Artificial Intelligence and Eighth Innovative Applications of Artificial
Intelligence Conference, AAAI 96, IAAI 96, Portland, Oregon, USA,
August 4-8, 1996, Volume 1 (1996), pp. 627–632.

[52] Fagin, R. Generalized first-order spectra, and polynomial-time
recognizable sets. 43–73.

[53] Farmer, W. M. The seven virtues of simple type theory. J. Appl. Log.
6, 3 (2008), 267–286.

[54] Flake, G. W., Lawrence, S., Giles, C. L., and Coetzee, F. Self-
organization and identification of web communities. IEEE Computer 35,
3 (2002), 66–71.

[55] Fraenkel, A. S., and Lichtenstein, D. Computing a perfect strategy
for n*n chess requires time exponential in n.

[56] Frisch, A. M., Harvey, W., Jefferson, C., Hernández, B. M., and
Miguel, I. Essence : A constraint language for specifying combinatorial
problems. Constraints An Int. J. 13, 3 (2008), 268–306.

[57] Gale, D., and Shapley, L. S. College admissions and the stability of
marriage. The American Mathematical Monthly 69, 1 (1962), 9–15.

[58] Gebser, M., Kaminski, R., Kaufmann, B., and Schaub, T. Answer
Set Solving in Practice. Synthesis Lectures on Artificial Intelligence and
Machine Learning. Morgan and Claypool Publishers, 2012.

[59] Gebser, M., Kaminski, R., Kaufmann, B., and Schaub, T. Clingo
= ASP + control: Preliminary report. CoRR abs/1405.3694 (2014).

[60] Gebser, M., Kaminski, R., and Schaub, T. Complex optimization
in answer set programming. Theory Pract. Log. Program. 11, 4-5 (2011),
821–839.

[61] Gebser, M., Kaufmann, B., and Schaub, T. Solution enumeration for
projected boolean search problems. In Constraint Programming, Artificial
Intelligence and Operations Research (CPAIOR) (2009), vol. 5547 of
Lecture Notes in Computer Science, Springer, pp. 71–86.

[62] Gebser, M., Obermeier, P., Otto, T., Schaub, T., Sabuncu, O.,
Nguyen, V., and Son, T. C. Experimenting with robotic intra-logistics
domains. Theory Pract. Log. Program. 18, 3-4 (2018), 502–519.

BIBLIOGRAPHY 137

[63] Gebser, M., Schaub, T., Thiele, S., and Veber, P. Detecting
inconsistencies in large biological networks with answer set programming.
Theory Pract. Log. Program. 11, 2-3 (2011), 323–360.

[64] Gelfond, M., and Lifschitz, V. The stable model semantics for
logic programming. In Logic Programming, Proceedings of the Fifth
International Conference and Symposium, Seattle, Washington, USA,
August 15-19, 1988 (2 Volumes) (1988), pp. 1070–1080.

[65] Gelfond, M., and Przymusinska, H. Towards a theory of elaboration
tolerance: Logic programming approach. International Journal of Software
Engineering and Knowledge Engineering 6, 1 (1996), 89–112.

[66] Giunchiglia, E., Marin, P., and Narizzano, M. Reasoning with
quantified boolean formulas. In Handbook of Satisfiability. 2009, pp. 761–
780.

[67] Giunchiglia, E., Narizzano, M., Pulina, L., and Tacchella, A.
Qcir-g14: A non-prenex non-cnf format for quantified boolean formulas.
Accessed: 2020-08-03.

[68] Guyet, T., Moinard, Y., Quiniou, R., and Schaub, T. Efficiency
analysis of ASP encodings for sequential pattern mining tasks. In Advances
in Knowledge Discovery and Management - Volume 7 [Best of EGC
2016,Reims, France] (2016), B. Pinaud, F. Guillet, B. Crémilleux, and
C. de Runz, Eds., vol. 732 of Studies in Computational Intelligence,
Springer, pp. 41–81.

[69] Hall, N., and Paul, L. Causation: A User’s Guide. Oxford University
Press, Oxford, 2013.

[70] Halpern, J. Y. A modification of the halpern-pearl definition of causality.
In Proceedings of the Twenty-Fourth International Joint Conference on
Artificial Intelligence (2015), AAAI Press, pp. 3022–3033.

[71] Halpern, J. Y., and Pearl, J. Causes and explanations: A structural-
model approach: Part 1: Causes. In UAI ’01: Proceedings of the
17th Conference in Uncertainty in Artificial Intelligence, University of
Washington, Seattle, Washington, USA, August 2-5, 2001 (2001), J. S.
Breese and D. Koller, Eds., Morgan Kaufmann, pp. 194–202.

[72] Harvey, W. CSPLib problem 010: Social golfers problem. http:
//www.csplib.org/Problems/prob010.

[73] Hassan, M., Coulet, A., and Toussaint, Y. Learning subgraph
patterns from text for extracting disease - symptom relationships. In

http://www.csplib.org/Problems/prob010
http://www.csplib.org/Problems/prob010

138 BIBLIOGRAPHY

Proceedings of the 1st International Workshop on Interactions between
Data Mining and Natural Language Processing co-located with The
European Conference on Machine Learning and Principles and Practice
of Knowledge Discovery in Databases, DMNLP@PKDD/ECML 2014,
Nancy, France, September 15, 2014 (2014), P. Cellier, T. Charnois,
A. Hotho, S. Matwin, M. Moens, and Y. Toussaint, Eds., vol. 1202
of CEUR Workshop Proceedings, CEUR-WS.org, pp. 81–96.

[74] Hassan-Shafique, K. Partitioning A Graph In Alliances And Its
Application To Data Clustering. PhD thesis, University of Central Florida,
Orlando, USA, 2004.

[75] Hou, P., Wittocx, J., and Denecker, M. A deductive system
for PC(ID). In Logic Programming and Nonmonotonic Reasoning, 9th
International Conference, LPNMR 2007, Tempe, AZ, USA, May 15-17,
2007, Proceedings (2007), pp. 162–174.

[76] Ianni, G., Ielpa, G., Pietramala, A., Santoro, M. C., and
Calimeri, F. Enhancing answer set programming with templates. In
10th International Workshop on Non-Monotonic Reasoning (NMR 2004),
Whistler, Canada, June 6-8, 2004, Proceedings (2004), pp. 233–239.

[77] Ianni, G., Krennwallner, T., and Calimeri, F. Asp competition
2013.

[78] Immerman, N. Languages that capture complexity classes. SIAM J.
Comput. 16, 4 (1987), 760–778.

[79] Immerman, N. Descriptive complexity and model checking. In
Foundations of Software Technology and Theoretical Computer Science,
18th Conference, Chennai, India, December 17-19, 1998, Proceedings
(1998), V. Arvind and R. Ramanujam, Eds., vol. 1530 of Lecture Notes in
Computer Science, Springer, pp. 1–5.

[80] Immerman, N. Descriptive complexity. Graduate texts in computer
science. Springer, 1999.

[81] Inokuchi, A., Washio, T., and Motoda, H. An apriori-based
algorithm for mining frequent substructures from graph data. vol. 1910,
pp. 13–23.

[82] Inokuchi, A., Washio, T., Okada, T., and Motoda, H. Applying
the apriori-based graph mining method to mutagenesis data analysis.
Journal of Computer Aided Chemistry 2 (01 2001).

BIBLIOGRAPHY 139

[83] Järvisalo, M. Itemset mining as a challenge application for answer
set enumeration. Logic Programming and Nonmonotonic Reasoning
(LPNMR), pp. 304–310.

[84] Jordan, C., Klieber, W., and Seidl, M. Non-cnf QBF solving with
QCIR. In Beyond NP, Papers from the 2016 AAAI Workshop, Phoenix,
Arizona, USA, February 12, 2016 (2016).

[85] Kakas, A. C., Van Nuffelen, B., and Denecker, M. A-system:
Problem solving through abduction. In Proceedings of the Seventeenth
International Joint Conference on Artificial Intelligence, IJCAI 2001,
Seattle, Washington, USA, August 4-10, 2001 (2001), pp. 591–596.

[86] Kalviainen, H., and Oja, E. Comparisons of attributed graph matching
algorithms for computer vision. In In Proc. of STEP-90, Finnish Artificial
Intelligence Symposium (1990), pp. 354–368.

[87] Kaufmann, B., Leone, N., Perri, S., and Schaub, T. Grounding
and solving in answer set programming. AI Magazine 37, 3 (2016), 25–32.

[88] Keller, S., Miettinen, P., and Kalinina, O. V. Frequent subgraph
mining for biologically meaningful structural motifs. bioRxiv (2020).

[89] Kemmar, A., Lebbah, Y., Loudni, S., Boizumault, P., and
Charnois, T. Prefix-projection global constraint and top-k approach for
sequential pattern mining. Constraints 22, 2 (2017), 265–306.

[90] Kleinberg, J. Detecting a network failure. In Proceedings 41st Annual
Symposium on Foundations of Computer Science (2000), pp. 231–239.

[91] Klieber, W. Ghostq. J. Satisf. Boolean Model. Comput. 11, 1 (2019),
65–72.

[92] Klieber, W., Janota, M., Marques-Silva, J., and Clarke, E. M.
Solving QBF with free variables. In CP (2013), vol. 8124 of Lecture Notes
in Computer Science, Springer, pp. 415–431.

[93] Kowalski, R. A. Predicate logic as programming language. In
Information Processing, Proceedings of the 6th IFIP Congress 1974,
Stockholm, Sweden, August 5-10, 1974 (1974), pp. 569–574.

[94] Kranakis, E., Krizanc, D., Ruf, B., Urrutia, J., and Woeginger,
G. The vc-dimension of set systems defined by graphs. Discrete Applied
Mathematics 77, 3 (1997), 237 – 257.

140 BIBLIOGRAPHY

[95] Krings, S., Leuschel, M., Körner, P., Hallerstede, S., and
Hasanagic, M. Three is a crowd: Sat, SMT and CLP on a chessboard. In
Practical Aspects of Declarative Languages - 20th International Symposium,
PADL 2018, Los Angeles, CA, USA, January 8-9, 2018, Proceedings
(2018), pp. 63–79.

[96] Kristiansen, P., Hedetniemi, S. M., and Hedetniemi, S. T.
Alliances in graphs. Journal of Combinatorial Mathematics and
Combinatorial Computing 48 (2004), 157–177.

[97] Lamport, L. Specifying Systems, The TLA+ Language and Tools for
Hardware and Software Engineers. Addison-Wesley, 2002.

[98] Leuschel, M., and Butler, M. J. ProB: An automated analysis
toolset for the B method. STTT 10, 2 (2008), 185–203.

[99] Li, H., Yap, C. W., Ung, C. Y., Xue, Y., Cao, Z. W., and Chen,
Y. Z. Effect of selection of molecular descriptors on the prediction of
bloodbrain barrier penetrating and nonpenetrating agents by statistical
learning methods. Journal of Chemical Information and Modeling 45, 5
(2005), 1376–1384. PMID: 16180914.

[100] Lin, F., and Reiter, R. How to progress a database. Artif. Intell. 92,
1-2 (1997), 131–167.

[101] Lonsing, F., and Biere, A. Depqbf: A dependency-aware QBF solver.
JSAT 7, 2-3 (2010), 71–76.

[102] Lonsing, F., Egly, U., and Van Gelder, A. Efficient clause learning
for quantified boolean formulas via QBF pseudo unit propagation. In
Theory and Applications of Satisfiability Testing - SAT 2013 - 16th
International Conference, Helsinki, Finland, July 8-12, 2013. Proceedings
(2013), M. Järvisalo and A. Van Gelder, Eds., vol. 7962 of Lecture Notes
in Computer Science, Springer, pp. 100–115.

[103] Lynce, I., and Silva, J. P. M. On computing minimum unsatisfiable
cores. In SAT 2004 - The Seventh International Conference on Theory
and Applications of Satisfiability Testing, 10-13 May 2004, Vancouver,
BC, Canada, Online Proceedings (2004).

[104] Maratea, M., Ricca, F., Faber, W., and Leone, N. Look-
back techniques and heuristics in DLV: implementation, evaluation, and
comparison to QBF solvers. J. Algorithms 63, 1-3 (2008), 70–89.

[105] McCarthy, J. Elaboration tolerance. In Working Papers of the Fourth
International Symposium on Logical formalizations of Commonsense
Reasoning, Commonsense-1998 (1998).

BIBLIOGRAPHY 141

[106] McDermid, E., and Irving, R. W. Sex-equal stable matchings:
Complexity and exact algorithms. Algorithmica 68, 3 (2014), 545–570.

[107] Mitchell, D. G., and Ternovska, E. A framework for representing
and solving NP search problems. In Proceedings, The Twentieth National
Conference on Artificial Intelligence and the Seventeenth Innovative
Applications of Artificial Intelligence Conference, July 9-13, 2005,
Pittsburgh, Pennsylvania, USA (2005), pp. 430–435.

[108] Mitchell, D. G., and Ternovska, E. Expressive power and
abstraction in essence. Constraints An Int. J. 13, 3 (2008), 343–384.

[109] Montali, M. Putting decisions in perspective. In Business
Process Management Workshops (Cham, 2019), C. Di Francescomarino,
R. Dijkman, and U. Zdun, Eds., Springer International Publishing, pp. 355–
361.

[110] Muggleton, S., and De Raedt, L. Inductive logic programming:
Theory and methods. J. Log. Program. 19/20 (1994), 629–679.

[111] Musser, D. R., and Saini, A. STL tutorial and reference guide -
C++ programming with the standard template library. Addison-Wesley
professional computing series. Addison-Wesley, 1996.

[112] Nethercote, N., Stuckey, P. J., Becket, R., Brand, S., Duck,
G. J., and Tack, G. Minizinc: Towards a standard CP modelling
language. In Principles and Practice of Constraint Programming - CP
2007, 13th International Conference, CP 2007, Providence, RI, USA,
September 23-27, 2007, Proceedings (2007), pp. 529–543.

[113] Nijssen, S., and Kok, J. N. Frequent graph mining and its application
to molecular databases. In Proceedings of the IEEE International
Conference on Systems, Man & Cybernetics: The Hague, Netherlands,
10-13 October 2004 (2004), IEEE, pp. 4571–4577.

[114] Papadimitriou, C. H., and Yannakakis, M. The complexity of facets
(and some facets of complexity). J. Comput. Syst. Sci. 28, 2 (1984),
244–259.

[115] Paramonov, S., Chen, T., and Guns, T. Generic mining of condensed
pattern representations under constraints. In CEUR: Young Scientist‘s
Second International Workshop on Trends in Information Processing
Proceedings (YSIP) (2017), vol. 1837, pp. 138–177.

[116] Peitl, T., Slivovsky, F., and Szeider, S. Dependency learning for
QBF. In Theory and Applications of Satisfiability Testing - SAT 2017 -

142 BIBLIOGRAPHY

20th International Conference, Melbourne, VIC, Australia, August 28 -
September 1, 2017, Proceedings (2017), S. Gaspers and T. Walsh, Eds.,
vol. 10491 of Lecture Notes in Computer Science, Springer, pp. 298–313.

[117] Plaisted, D. A., and Greenbaum, S. A structure-preserving clause
form translation. J. Symb. Comput. 2, 3 (1986), 293–304.

[118] Pnueli, A. The temporal logic of programs. In 18th Annual Symposium
on Foundations of Computer Science, Providence, Rhode Island, USA, 31
October - 1 November 1977 (1977), IEEE Computer Society, pp. 46–57.

[119] Redl, C. Explaining inconsistency in answer set programs and extensions.
In Logic Programming and Nonmonotonic Reasoning - 14th International
Conference, LPNMR 2017, Espoo, Finland, July 3-6, 2017, Proceedings
(2017), M. Balduccini and T. Janhunen, Eds., vol. 10377 of Lecture Notes
in Computer Science, Springer, pp. 176–190.

[120] Reiter, R. A logic for default reasoning. Artif. Intell. 13, 1-2 (1980),
81–132.

[121] Robson, J. M. Combinatorial games with exponential space complete
decision problems. In Mathematical Foundations of Computer Science
1984, Praha, Czechoslovakia, September 3-7, 1984, Proceedings (1984),
pp. 498–506.

[122] Roth, A., Sönmez, T., and Unver, U. Pairwise kidney exchange.
Journal of Economic Theory 125, 2 (2005), 151–188.

[123] Rückert, U., and Kramer, S. Optimizing feature sets for structured
data. In Machine Learning: ECML 2007, 18th European Conference on
Machine Learning, Warsaw, Poland, September 17-21, 2007, Proceedings
(2007), J. N. Kok, J. Koronacki, R. L. de Mántaras, S. Matwin,
D. Mladenic, and A. Skowron, Eds., vol. 4701 of Lecture Notes in Computer
Science, Springer, pp. 716–723.

[124] Saikko, P., Dodaro, C., Alviano, M., and Järvisalo, M. A hybrid
approach to optimization in answer set programming. In Principles of
Knowledge Representation and Reasoning: Proceedings of the Sixteenth
International Conference, KR 2018, Tempe, Arizona, 30 October - 2
November 2018 (2018), pp. 32–41.

[125] Schäfer, M. Deciding the vapnik-cervonenkis dimension is Σp
3-complete.

In Proceedings of the Eleveth Annual IEEE Conference on Computational
Complexity, Philadelphia, Pennsylvania, USA, May 24-27, 1996 (1996),
pp. 77–80.

BIBLIOGRAPHY 143

[126] Shaw, M. Abstraction techniques in modern programming languages.
IEEE Software 1, 4 (1984), 10–26.

[127] Shrivastava, N., Suri, S., and Tóth, C. D. Detecting cuts in sensor
networks. ACM Trans. Sen. Netw. 4, 2 (Apr. 2008).

[128] Silva, J. P. M., and Sakallah, K. A. GRASP - a new search algorithm
for satisfiability. In International Conference on Computer-Aided Design
(ICCAD), San Jose, California, USA, November 10-14 1996 (1996),
pp. 220–227.

[129] Stockmeyer, L. J. The polynomial-time hierarchy. Theor. Comput.
Sci. 3, 1 (1976), 1–22.

[130] Stockmeyer, L. J., and Chandra, A. K. Provably difficult
combinatorial games. SIAM J. Comput. 8, 2 (1979), 151–174.

[131] Tasharrofi, S., and Ternovska, E. A semantic account for modularity
in multi-language modelling of search problems. In Frontiers of Combining
Systems, 8th International Symposium, FroCoS 2011, Saarbrücken,
Germany, October 5-7, 2011. Proceedings (2011), pp. 259–274.

[132] Torlak, E., and Jackson, D. Kodkod: A relational model finder.
In Tools and Algorithms for the Construction and Analysis of Systems,
13th International Conference, TACAS 2007, Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS 2007
Braga, Portugal, March 24 - April 1, 2007, Proceedings (2007), pp. 632–
647.

[133] van der Hallen, M., and Janssens, G. SOGrounder: Modelling and
solving second-order logic. In Principles of Knowledge Representation and
Reasoning: Proceedings of the Sixteenth International Conference, KR
2018, Tempe, Arizona, 30 October - 2 November 2018 (2018), pp. 72–77.

[134] van der Hallen, M., Paramonov, S., Janssens, G., and Denecker,
M. Knowledge representation analysis of graph mining. Ann. Math. Artif.
Intell. 86, 1-3 (2019), 21–60.

[135] van der Hallen, M., Paramonov, S., Leuschel, M., and
Janssens, G. Knowledge representation analysis of graph mining. CoRR
abs/1608.08956 (2016).

[136] van Emden, M. H., and Kowalski, R. A. The semantics of predicate
logic as a programming language. J. ACM 23, 4 (1976), 733–742.

144 BIBLIOGRAPHY

[137] Van Hertum, P., Dasseville, I., Janssens, G., and Denecker, M.
The KB paradigm and its application to interactive configuration. Theory
Pract. Log. Program. 17, 1 (2017), 91–117.

[138] Vapnik, V. N., and Chervonenkis, A. Y. On the uniform convergence
of relative frequencies of events to their probabilities. Theory of Probability
& Its Applications 16, 2 (1971), 264–280.

[139] Vardi, M. Y. Querying logical databases. J. Comput. Syst. Sci. 33, 2
(1986), 142–160.

[140] Vennekens, J., Wittocx, J., Mariën, M., and Denecker, M.
Predicate introduction for logics with a fixpoint semantics. part I: logic
programming. Fundam. Inform. 79, 1-2 (2007), 187–208.

[141] Weinzierl, A. Blending lazy-grounding and CDNL search for answer-set
solving. In Logic Programming and Nonmonotonic Reasoning (LPNMR)
(2017), vol. 10377 of Lecture Notes in Computer Science, Springer, pp. 191–
204.

[142] Wittocx, J., Denecker, M., and Bruynooghe, M. Constraint
propagation for first-order logic and inductive definitions. ACM Trans.
Comput. Log. 14, 3 (2013), 17:1–17:45.

[143] Wittocx, J., Mariën, M., and Denecker, M. Grounding FO and
FO(ID) with bounds. J. Artif. Intell. Res. 38 (2010), 223–269.

[144] Yan, X., and Han, J. gspan: Graph-based substructure pattern mining.
In Proceedings of the 2002 IEEE International Conference on Data Mining
(ICDM 2002), 9-12 December 2002, Maebashi City, Japan (2002), pp. 721–
724.

Curriculum Vitae

Matthias Van der Hallen (Deurne, 28 september 1991), graduated secondary
school, the College van het Eucharistisch Hart Essen (Greek-Latin), in 2009 and
subsequently started a bachelor’s in Engineering Science at KU Leuven, with
major in Computer Science and a minor in Electrical Engineering. He went on
to obtain a master’s degree in Engineering Science: Computer Science, magna
cum laude, in September 2014, with a master thesis titled “Secure Compilation
of ML Modules” supervised by prof. dr. ir. Frank Piessens.

After obtaining his master’s degree, Matthias joined the DTAI (Declarative
Languages and Artificial Intelligence) research group at KU Leuven to persue
his PhD under supervision of prof. dr. ir. Gerda Janssens. Starting January 1,
2015 he was granted a four year PhD fellowship strategic basic research by the
Research Foundation - Flanders.

145

List of publications

Journal Articles

• Dasseville, I., van der Hallen, M., Janssens, G., and Denecker M.
“Semantics of Templates in a Compositional Framework for Building
Logics.” in Theory and Practice of Logic Programming, vol 15, 4-5 (2015),
pp 681–695.

• van der Hallen, M., Paramonov, S., Janssens, G., and Denecker, M.
“Knowledge Representation Analysis of Graph Mining.” in Annals of
Mathematics and Artificial Intelligence, vol 86, 1-3 (2019), pp 21 –60.

Peer-reviewed Articles at Conferences

• Dasseville, I., van der Hallen, M., Bogaerts, B., Janssens, G., and
Denecker, M. “A Compositional Typed Higher-Order Logic with
Definitions.” in Technical Communications of the 32nd International
Conference on Logic programming, New York City, USA, 16 Oct. - 21
Oct. 2016.

• van der Hallen, M., and Janssens, G. “SOGrounder: Modelling and
Solving Second-Order Logic.” in Principles of Knowledge Representation
and Reasoning: Proceedings of the sixteenth International Conference, 30
Oct. - 02 Nov. 2018, The AAAI Press, pp 72–77.

Peer-reviewed Articles at Workshops

• van der Hallen, M., Paramonov, S., Leuschel, M., and Janssens, G.
“Knowledge Representation Analysis of Graph Mining.” in Proceedings

147

148 LIST OF PUBLICATIONS

of the Workshop on Answer Set Programming and Other Computing
Paradigms, New York City, USA, 16 Oct. 2016, pp 55–76

• van der Hallen, M., and Janssens, G. “A Grounder From Second-Order
Logic To QBF” in Proceedings of the International Workshop on Quantified
Boolean Formulas and Beyond, Oxford, England, 8 July 2018.

• Arteche, N., and van der Hallen, M. “A Formal Language for QBF Family
Definitions” in Proceedings of the International Workshop on Quantified
Boolean Formulas and Beyond, 2020 (accepted).

FACULTY OF ENGINEERING SCIENCE
DEPARTMENT OF COMPUTER SCIENCE

DTAI
Celestijnenlaan 200A box 2402

B-3001 Leuven
matthias.vanderhallen@kuleuven.be

http://www.dtai.cs.kuleuven.be

	Abstract
	Beknopte samenvatting
	List of Abbreviations
	List of Symbols
	Contents
	List of Figures
	List of Tables
	Introduction
	Overview
	Languages
	Inferences
	Systems

	Contributions

	Preliminaries
	First-Order Logic: Syntax and Semantics
	Syntax
	Semantics

	Expressivity of Logics

	Analysis of Graph Mining
	Introduction
	Preliminaries
	Formalization of graph mining
	Patterns
	Canonical patterns

	A higher-order specification of Graph Mining
	Representation of graphs
	A higher-order specification
	Desired properties of graph mining specifications

	First-order encodings of Graph Mining
	IDP
	ASP
	Comparative Summary
	Performance experiments

	Solver Techniques
	Nested Solvers
	Lazy Grounding

	Discussion and Future Work
	Grounding to QBF
	Lazy Grounding

	Conclusion

	A Second-Order Language and its Grounder
	Introduction and Related Work
	Second-Order Logic
	Syntax
	Semantics
	SO Logic as a Modeling Language

	QBF
	Implementation
	Advanced grounding techniques
	Grounding to QCIR

	Experiments
	Conclusion and Future Work

	Semantics of Templates
	Introduction
	Related Work
	Preliminaries: Rules and definitions
	Semantics of definitions

	Templates and Template Libraries
	The Complexity of Templates
	Template libraries for Existential Second-Order Logic

	Conclusion

	A Second-Order Pattern: Integrating inferences in logic
	Introduction
	Examples

	Theoretical foundation
	Semantics
	Expressivity

	Implementation
	Parametrized Theories and their Applications
	Quantifying over Variant Worlds

	Use case: Zebra Puzzle
	Conclusion

	An Overview of Problems with Second-Order Constraints
	Minimal Inconsistent Cores
	Optimal Stable Matching Problem
	Determining Path Vapnik-Chervonenkis Dimension
	Secure Sets
	Conclusion

	Conclusion
	Future Work

	Bibliography
	Curriculum Vitae

