
Noname manuscript No.
(will be inserted by the editor)

Knowledge Representation Analysis of Graph Mining

Matthias van der Hallen† · Sergey
Paramonov† · Gerda Janssens† · Marc
Denecker†

Received: date / Accepted: date

Abstract This paper analyses the graph mining problem, and the frequent pat-
tern mining task associated with it. In general, frequent pattern mining looks for
a graph which occurs frequently within a network or, in the transactional setting,
within a dataset of graphs. We discuss this task in the transactional setting, which
is a problem of interest in many fields such as bioinformatics, chemoinformatics
and social networks.

We look at the graph mining problem from a Knowledge Representation point
of view, hoping to learn something about support for higher-order logics in declar-
ative languages and solvers. Graph mining is studied as a prototypical problem;
it is easily expressible mathematically and exists in many variations. As such, it
appears to be a prime candidate for a declarative approach; one would expect
this allows for a clear, structured, statement of the problem combined with easy
adaptation to changing requirements and variations.

Current state-of-the-art KR languages such as IDP and ASP aspire to be
practical solvers for such problems [9]. Nevertheless, expressing the graph min-
ing problem in these languages requires unexpectedly complicated and unintuitive
encoding techniques. These techniques are in contrast to the ease with which one
can transform the mathematical definition of graph mining to a higher-order logic
specification, and distract from the problem essentials, complicating possible fu-
ture adaptation.

In this paper, we argue that efforts should be made towards supporting higher-
order logic specifications in modern specification languages, without unintuitive
and complicated encoding techniques. We argue that this not only makes repre-
sentation clearer and more susceptible to future adaptation, but might also allow
for faster, more competitive solver techniques to be implemented.

Matthias van der Hallen is supported by a Ph.D. fellowship from the Research Foundation -
Flanders (FWO - Vlaanderen).

†
Department Computer Science - KU Leuven,
Celestijnenlaan 200A,
3000 Leuven,
E-mail: firstname.lastname@kuleuven.be

2 Matthias van der Hallen et al.

Keywords Knowledge Representation · Higher Order · Graph Mining · Answer
Set Programming · Imperative Declarative Programming

1 Introduction

Many real-world families of problems can be formalised as the combination of
some smaller problems, and consequently lend themselves to a declarative mod-
elling approach, as studied in Knowledge Representation (KR). Specifically, knowl-
edge representation offers a natural framework for declarative modelling satisfying
‘The Principle of Elaboration Tolerance’ [33]. In short, this principle states that
declarative specifications are easily adapted to new requirements or changed cir-
cumstances.

Not only do problems of a composite nature benefit from an elaboration toler-
ant approach, they are also often easily expressed using higher-order logic. How-
ever, current state-of-the-art knowledge representation systems such as IDP and
Answer Set Programming (ASP) are elaboration tolerant but provide little or no
support for higher-order expressions. This lack of support leads to contorted mod-
els employing many encoding techniques. Thus, it is an open challenge for KR
systems to provide support for abstract, higher-order modelling while remaining
elaboration tolerant. We study the Graph Mining problem as an example of such a
composite problem, easily expressible in higher-order logic, with the aim of gath-
ering insight in and deriving techniques for such problems in general. As a first
step towards this goal, we will:

– Propose a higher-order encoding of graph mining that closely follows its math-
ematical model (Section 3).

– Explore how the current state-of-the-art KR systems model graph mining using
modelling techniques (Section 4).

– Propose and experiment with additional solver techniques derived from these
modelling techniques that can support higher-order encodings; as the modelling
language is modified only with well-known generalisations of existing language
constructs, elaboration tolerance is not affected (Section 5).

Graph mining One of the most fundamental tasks within the realm of data mining
is frequent pattern mining : the task of enumerating patterns which occur frequently
in a dataset. Graph mining is a variant of frequent pattern mining in which the
patterns are structured as (labeled) graphs. The dataset in which patterns must
occur is either a single large-scale network or a vast set of separate, smaller graphs.
The latter option is often referred to as the transactional setting. In the context
of graph mining, for a pattern to ‘occur’ in a graph G, it must be homomorphic
to a subset of the graph G.

Owing to the research background of one of the authors, and because it is com-
putationally more feasible, this work will only consider the transactional setting.
This transactional setting is relevant as it can be used for knowledge discovery
from graph structured data in many domains, such as chemoinformatics, natural
language processing and bioinformatics. For example, within bioinformatics, graph
mining can be used to find molecular substructures (such as benzene rings) that
possibly predict or cause certain properties such as lumocity or the mutagenicity

Knowledge Representation Analysis of Graph Mining 3

of diseases such as Salmonella. Within natural language processing, graph mining
can identify key concepts in a transcript from a graph representation of the natural
language sentences.

As real-world problems are computationally challenging, the field of data min-
ing has developed numerous specialised imperative algorithms. These different
imperative algorithms correspond to the many variants of pattern mining tasks
described in the literature, from various types of item set mining, where data is
propositional, to tasks involving more structured data and patterns, such as trees
and graphs. Well known examples of algorithms for frequent pattern mining in
databases of graphs are gspan [42] and gaston [35].

However, the need for many different algorithms for only slightly different vari-
ants within pattern mining tasks has motivated the exploration of more declarative
approaches. For example, it has been shown that Constraint Programming (CP)
[15] and Answer Set Programming (ASP) [25] can express item set mining, which
is a setting of frequent pattern mining where data is propositional and can be
represented in a table. Their results demonstrate that such tasks can be accom-
plished in a declarative way with an acceptable performance penalty. Furthermore,
its different variations can be supported with only minimal changes.

When mining more complex and structured data than item sets, such as graphs
or sequences, predicate logic has been used for representation and inductive logic
programming [34] has emerged as a way to mine such data. While we know of
no earlier declarative approaches to graph mining, recent work on sequence min-
ing [21] applies ASP to the basic constrained case of frequent sequence mining.
Their solution performs pattern generation, the frequency check, and uses an ex-
tension of ASP called asprin [8] to prefer patterns which satisfy more involved
properties such as maximality (no larger patterns exist) or coverage (no other
pattern occurs in the same examples). However, because graphs are more com-
plex structures than sequences, extending their solution to graphs is non-trivial.
In the context of graphs, for example, checking occurrence corresponds with a
homomorphism check (beyond P), instead of a (polynomial) subset check.

Owing to its descriptive complexity, the homomorphism check could easily be
expressed using higher-order logic, but this is not supported by state-of-the-art
declarative languages such as IDP and ASP. We show that graph mining can
nevertheless be supported using various encoding techniques, making it an ideal
candidate for our case study into combining support for higher-order logic with
elaboration tolerance.

Higher-order logic As mentioned earlier, the composite nature of the graph min-
ing problem lends itself for a higher-order logic specification, in which quantified
variables can range not only over individuals but also over sets, or sets of sets.
For example, a high-level view of the graph mining problem consists of generat-
ing connected labeled graphs (patterns), checking whether they occur frequently
within a dataset, and filtering out patterns which are too similar to others (e.g.
isomorphic), leaving only those patterns which we will call canonical. In this view,
it makes sense to describe the mechanisms behind checking for canonicity and
occurrence separately, which, as we will show, translates nicely to higher-order
specifications.

Specification languages offer varying levels of support for higher-order logic.
On the one hand, meta-programming, as known from Logic Programming [1], has

4 Matthias van der Hallen et al.

inspired the introduction of higher-order atoms in Hex [16] and the higher-order
syntax in HiLog [11]. Predicate symbols can be either constants as in Prolog (first-
order case) or variables (second-order case). The latter range over predicate names,
and not the predicate space itself, essentially combining second-order syntax with
first-order semantics. On the other hand, formal specification languages such as
Z [7], B [2], Event-B [3] and TLA [28] extend predicate logic with set theory and
offer higher-order datastructures. ProB [29] is a constraint solver, animator and
model checker for such languages, implemented in SICStus Prolog.

While it is possible to express the graph mining problem in such languages
directly using higher-order logic, earlier work [23] has shown that these systems
miss flexibility with respect to inferences other than model expansion, and that
their performance does not rival that of systems based on revolutionary techniques
such as CDCL [39]. However, these systems, examples of which are the ones for
the IDP [14] and the ASP [17,18] languages, currently do not allow higher-order
syntax. Nevertheless, several techniques exist for these languages that allow the
user to simulate higher-order logic to model problems such as graph mining. This
observation leads us to inquire whether these techniques can be generalised and
be used to provide these languages with built-in support for higher-order.

2 Formalization of graph mining

In this section we mathematically formalize the transactional graph mining prob-
lem. As we will only consider the transactional setting in this work, we will simply
refer to it as ‘graph mining’. First, we define graphs, graph homomorphism, and
the concept of a pattern. We then express what it means for a pattern to be
canonical, which is needed when we want to mine more than one pattern.

2.1 Patterns

We start with a comprehensive formal definition of the graph mining problem.
First, we will assume the existence of two finite, sufficiently large sets: a set V
consisting of vertices, and a set L of labels for those vertices.

Definition 1 (Labeled Graph) A labeled graph G is a tuple 〈N,E, l〉 where
N is a subset of the vertices V , called the nodes of the graph G, E is a binary
predicate on N that represents the set of (directed) edges and l is a unary function
from N to L.

Definition 2 (Connectedness) A graph G = 〈N,E, l〉 is connected iff for each
pair of nodes v and v′ in N , there exists an edge

(
v, v′

)
∈ E or there exists a

sequence v, v1 . . . vn, v′ such that there exist edges (v, v1), (vi, vi+1) and
(
vn, v

′) ∈
E, where 1 ≤ i ≤ n− 1.

Definition 3 (Graph Homomorphism) A (injective) graph homomorphism f
from a labeled graph P = 〈N,E, l〉 to a labeled graph G′ = 〈N ′, E′, l′〉 is an
(injective) mapping f : N → N ′ from nodes of P to nodes of G′ such that:
– ∀u, v ∈ N : (u, v) ∈ E =⇒ (f(u), f(v)) ∈ E′ (the mapping preserves edges),

and

Knowledge Representation Analysis of Graph Mining 5

– ∀v ∈ N : l(v) = l′(f(v)) (the mapping respects labelings).
If an (injective) graph homomorphism from graph P to G′ exists, we say P is
(injectively) homomorphic1 with G′.

Definition 4 (Graph Mining) Given a sufficiently large set of vertices V and
labels L, two sets G+ and G− of positive, respectively negative example graphs
over V and L, two thresholds N− and N+, and a graph T over V and L called
the template, we look for a graph P represented by tuple 〈NP , EP , lP〉 such that:
– P is a vertex-induced subgraph of T , meaning that the edges of P are exactly

those edges of T such that both endpoints are chosen to be nodes of P,
– P is fully connected,
– P is injectively homomorphic with at least N+ positive examples G+ ∈ G+,
– P is injectively homomorphic with at most N− negative examples G− ∈ G−.

We call these injective homomorphisms the positive (negative) homomorphisms,
and the restriction on their number the positive (negative) homomorphic property,
respectively.

Note that we choose injective homomorphisms as the matching operator in
this definition, and include the concept of a template graph to guide the search
as well as to limit the search space. These choices are inspired by their appropri-
ateness for many use cases in the realm of bioinformatics, chemoinformatics and
social networks. However, both of these choices can be changed effortlessly, in the
mathematical definition as well as in any specifications of the problem: We can
easily drop the injectivity constraint in any logic specification, and can choose the
fully connected graph as template without loss of generality. For the remainder
of the work, we will use ‘homomorph’ to mean ‘injectively homomorph’ unless
specifically stated otherwise.

(a) Positive Example (b) Negative Example (c) Template Graph

Figure 1: A graph mining instance (N+ = 1, N− = 0) with pattern candidates.
Node labels are differentiated by the shape of their indicator (circle, diamond).

(a) Candidate a (b) Candidate b

Figure 2: Pattern candidates for the graph mining instance shown in Figure 1

As an example of a graph mining problem instance, take the problem set shown
in Figure 1. Node labels are differentiated by the shape of their indicator: circle
or diamond. All nodes have the same (circle) label, except for the rightmost node

1 Note that within the data mining community, injectively homomorphic is also commonly
known as subgraph isomorphic.

6 Matthias van der Hallen et al.

Figure 3: A mapping of candidate 2b to the negative example 1b.

in the negative example 1b. Furthermore, when interpreting these graphs, all (vi-
sualised) edges are bidirection, i.e. they would represent two opposingly directed
edges when translated to textual data. The angles and lengths of edges are irrele-
vant, only the connections are relevant. We take the positive and negative thresh-
olds to be N+ = 1, N− = 0, meaning we require at least one homomorphism with
a positive example and allow no homomorphisms with negative examples. There is
one positive example (Figure 1a), and one negative example (Figure 1b), while
Figure 1c shows the template graph.

Figures 2a, 2b show a pattern and an invalid pattern candidate respectively:
They are both connected subgraphs of the template. However, because we require
at least one homomorphism with a positive example, and allow no homomorphisms
with negative examples (i.e., problem parameters N+ = 1 and N− = 0), Figure 2a
represents a pattern. It is clear that there exists a mapping from each node from
the valid pattern to a node of the positive example, while no such mapping exists
for the negative example. Looking at Figure 2b, this graph is clearly homomorphic
with both the positive as well as the negative example: A possible mapping from
2b to the negative example 1b is shown in Figure 3. Therefore, 2b is an invalid
pattern candidate, not a pattern.

2.2 Canonical patterns

To extend on the graph mining task described above, we can look for multiple
patterns, instead of just one. In this case, one can impose restrictions on the
different patterns that are found. For example, it stands to reason that one wants
only canonical solutions, meaning that no two patterns found are isomorphic.

Definition 5 (Graph Isomorphism) A graph isomorphism f between two la-
beled graphs G = 〈N,E, l〉 and G′ = 〈N ′, E′, l′〉 is a one-to-one mapping N → N ′

such that f represents an injective homomorphism from G to G′, and its inverse
f−1 represents an injective homomorphism from G′ to G. If there exist graph
isomorphisms between G and G′ we say G and G′ are isomorphic.

(a) First candidate pattern (b) Second candidate pattern

Figure 4: Possible patterns

Given the graph mining problem instance specified in Figure 1, we have already
established that Figure 4a is a pattern. When we try to mine a second pattern,

Knowledge Representation Analysis of Graph Mining 7

we might suggest a pattern as shown in Figure 4b. A quick check, however, will
show that there is a one-to-one mapping f such that both f as well as its inverse
f−1 preserve edges. As a result, both patterns candidates are isomorphic, and thus
only one should be accepted as a pattern.

Definition 6 (Canonical Patterns) A set of canonical patterns is a set P of
patterns P1, ...,Pn, such that for each pair of different elements (of P) Pi,Pj holds
that there does not exist an isomorphism between Pi and Pj .

When we mine multiple patterns, we will pose the additional requirement that
the mined patterns must be canonical. Of course, with the above definition of
canonicity, many solutions will exist: any pattern can be interchanged for any
of its isomorphic counterparts to generate a new solution. If this is unwanted,
this can be prevented by introducing an ordering on the isomorphic patterns,
and requiring that each pattern in the solution is the minimal pattern among its
isomorphic counterparts.

3 A higher-order specification of Graph Mining

In this section, we explore how the mathematical formalization of the graph mining
problem can be translated towards a higher-order specification. In the first section,
we will discuss how graphs introduce higher-order objects when modeled closely
to the mathematical definition. Next, we will discuss the higher-order specification
of the complete graph mining problem. We conclude by identifying a set of desired
properties for graph mining specifications and their solvers, which the proposed
higher-order specification satisfies.

3.1 Representation of graphs

Graphs are the main concept in the graph mining problem, and, when represented
using tuples 〈N,E, l〉, they take the form of composite objects: these graphs are a
collection of first-order objects, namely two predicates and a function. As such, a
set of graphs is equivalent to a set of tuples: the most straightforward representa-
tion of such a set would be a ternary predicate, with the node and edge predicate
and the labeling function as arguments:
Patterns = {({1,2,3}, {(1,2),(2,3),(3,1)},

{(17→a), (27→b), (37→a)})}

It is very natural to consider and represent each graph as a coherent ensemble
of its own components: all characteristics (edges, labeling . . .) of a graph are
represented by separate entities or concepts, which are grouped together for each
graph G in the tuple that describes G. We refer to this as the local coherence of
the graph representation.

Alternative representations could, for example, introduce an edge predicate for
each graph separately (e.g. called edge_g1/22, edge_g2/2), or, as we will be forced
to do later on, they could introduce an edge predicate for all graphs at once. This
obscures the relationship between the different characteristics of the same graph:

2 We use predicate_name/n to mean the predicate with name predicate_name and arity n.

8 Matthias van der Hallen et al.

– In the first alternative this relationship is only present in the name of each
predicate (which prohibits us to reason about it in a general way). Further-
more, without any additional constraints, it is possible to specify a graph only
partially, e.g., only provide an edge relationship.

– In the second alternative the relationship can be expressed using an identifier.
However, in contrast to the higher-order tupling approach, it is still possible
to specify a graph only partially.

Representing graphs instead as a tuple of its components is not only a very
natural representation, it also very explicitly shows that all example graphs are
independent, and that the searches for homomorphisms between a pattern and
example graphs are independent too. This motivates us to reason about graphs as
locally coherent objects in our logical models as well. The next section explores a
higher-order specification that achieves this goal.

3.2 A higher-order specification

In Listing 1, we propose a specification for the graph mining problem, using
features such as higher-order logic and inductive definitions. Regarding syntax
and style, we devise a syntax for illustration purposes inspired by IDP [14], which
closely corresponds to FO logic with ← for inductive definitions, as opposed to ⇒
for classical implication, and [type] for type annotations. We identify four major
syntactical additions w.r.t. regular IDP syntax:

– We introduce the keyword so-type. The so-type keyword can be used to define
a second-order type. As such, the type does not represent a set of domain
elements from the Herbrand universe, but instead represents a set of (tuples
of) predicates or functions. These predicates and functions themselves must be
typed using first-order types.

– When presented with an object of a second-order type consisting of a tuple,
one will often want to access one specific part of the tuple. To this end, the
different parts of a tuple are named. These names provide a way to project
a second-order object to one of its parts using .-syntax familiar from object-
oriented programming. For example, if a tuple result representing test scores
contains two elements, the name and score, then result.score accesses the score.

– We introduce the possibility to quantify over predicates or functions, using
the special quantifiers ∀SO and ∃SO. These quantifications must be typed:
∃SO F [I:O] means that there exists a function F which takes elements of type
I as input and returns elements of O as output. Likewise, ∃SO P [(I,O)] means
that there exists a predicate P, taking elements from I and O as its first and
second argument, respectively.

– We allow higher-order predicates with arguments of a second-order type. These
predicates can be defined using an inductive definition. These are predicates
which take (tuples of) predicates and functions as an argument. The seman-
tics of these higher-order inductive definitions is defined in Dasseville et al.
[13], where they were called template definitions. For an example, we refer
to Lines 32-40 of Listing 1, where the predicate is_pattern/1, which takes
a second-order argument graph as an argument, is defined using an inductive
definition.

Knowledge Representation Analysis of Graph Mining 9

As with IDP, we first define a vocabulary V, and define a theory T over this
vocabulary V. Then, when presented with a specific graph mining instance, we can
encode this into a structure S and perform the model expansion inference to find
a solution. We will further explore the contents of these three language blocks in
the sections below.

3.2.1 Vocabulary

As mentioned above, the first thing we define is the vocabulary V. First, we define
the types vertex and label to represent the set of vertices V and set of labels
L from the mathematical formalization. Next, we define the second-order type
graph, which is declared as a tuple of a predicate node/1, a predicate edge/2, and
a function labeling. These predicates and functions represent the exact subset of
vertices which are the nodes, the edges between these nodes and the labeling of
these nodes. As such, we have defined all the necessary types for the graph mining
problem.

Now, we can define the necessary predicates: We define the higher-order predi-
cates homomorph/2 and isomorph/2, which are binary relations between graphs. Next,
we define some simple sets of graphs as unary higher-order predicates over graphs:
the positive example set positive/1 and its negative counterpart negative/1, the
set of canonical patterns canonical_pattern/1, and the set of patterns is_pattern/1.
Lastly, we define:
– a ternary predicate connected/3, which is true if the two nodes represented by

the first two arguments are in fact connected within the graph given as a third
argument,

– a higher-order function template which refers to the chosen template graph,
and

– the two thresholds from the problem statement in Definition 4, N− and N+ as
simple integers.

3.2.2 Theory

In the theory, we define a number of the higher-order predicates using the concept
of template definitions, as described by [13]. Whenever a defined predicate accepts
a second-order type as argument, it can be decomposed using matching (e.g.,
Line 20). Quantification over second-order objects uses annotated quantifiers (∃SO
and ∀SO) and must be typed (any unary predicate represents a type), e.g., Line 21.
We will adhere to the convention that variables referring to higher-order objects
are upper case, whereas variables referring to propositional objects are lower case.

First, we define the concepts of homomorph/2 and isomorph/2: We express the
constraint that two graphs are only homomorph if it is possible to find a function F

from nodes of the first graph to nodes of the second graph, as can be derived from
the existential second-order quantification ∃SO in combination with the typing
statement [N1:N2] (Line 21). In line with Definition 3, we first express that this
function must be injective (Line 21). Next, we specify that it must preserve edges
(Line 22), and we conclude by specifying that it must preserve labels as well
(Line 23). For the definition of isomorph/2, we follow the mathematical definition
in the same way, except for the usage of f−1: as computing the inverse of a function
is not an operation in higher-order logic, we specifically state how the function F

10 Matthias van der Hallen et al.

must be bijective (Line 25 and 26), and how we can use F to express that f−1

must preserve edges as well (Line 28).
Next, we define the concept of connectedness within a given graph: This can

be defined rather straightforwardly using an inductive definition by nothing that
either the two nodes are connected directly, or there exists a third node connected
with both argument nodes.

We continue by defining the concept of a pattern, following the requirements
of Definition 4:

– a pattern is a vertex-induced subgraph of the template (using dot notation to
access the separate components of a variable of second-order type, Line 35),

– which is also fully connected, and
– if we count the number of graphs from the positive (resp. negative) example set

such that the proposed pattern graph is homomorphic with the chosen graph,
the result should exceed (resp. should not exceed) the positive (resp. negative)
threshold, as evidenced by the count aggregates (Line 37-38).

Lastly, we provide two constraints saying that for a graph P to be a canonical
pattern, it must first be a pattern, and secondly, no other canonical pattern P2

must exist such that P and P2 are isomorphic.
This encoding compactly specifies the graph mining problem, in a way that

closely corresponds to its mathematical definition, providing several general graph
properties as templates.

3.3 Desired properties of graph mining specifications

Using the graph mining problem as a case study, we derived a set of desirable
properties that a good KR specification and its associated solver should satisfy.
First, we discuss properties of the KR specification itself:

1. Labeled graphs are the main concept in the mathematical definition of the
graph mining problem. In this definition, labeled graphs are seen as a mathe-
matical object consisting of a vertex relation, an edge relation and a labeling
function. Thus, a good KR specification should treat labeled graphs as (higher-
order) objects.
It is clear from the second-order type graph in Listing 1 that this higher-order
specification satisfies this property.

2. All example graphs are independent, so the search for a homomorphism be-
tween a pattern and a given example graph can be performed independently.
A good KR specification should allow one to write the necessary quantifica-
tions locally to make this evident, as opposed to quantifying globally using the
vocabulary.
The universal quantification over example graphs hidden in the count aggregates
of Line 37 in Listing 1, combined with the existential quantification of F on
Line 21, clearly identifies the independence: for every single example graph, a
separate function f proving the homomorphism can be chosen.

3. The search for a homomorphism between pattern and example graph is always
the same, regardless of the sign of the example graph (negative or positive). The
only difference is the at most/at least constraint on the number of homomor-
phisms. A good KR specification preserves the similarity of these constraints.

Knowledge Representation Analysis of Graph Mining 11

Listing 1: Higher-order encoding for the general graph mining problem
1 vocabulary V {
2 type vertex
3 type label
4 so-type graph of (node(vertex), edge(vertex,vertex), labeling(vertex):label)
5
6 homomorph(graph, graph)
7 isomorph(graph, graph)
8 positive(graph) % a set of positive graphs
9 negative(graph)

10 canonical_pattern(graph)
11 is_pattern(graph)
12 connected(vertex,vertex, graph)
13 template:graph % a given template
14 N−: int
15 N+: int
16 }
17
18 theory T {
19 {
20 homomorph((N1, E1, L1), (N2, E2, L2)) ←
21

(
∃SO F [N1:N2]: (∀ x [N1] y [N1]: x 6= y =⇒ F(x) 6= F(y)) ∧

22 (∀ x [N1] y [N1]: E1(x, y) =⇒ E2(F(x), F(y))) ∧
23 (∀ x [N1]: L1(x) = L2(F(x)))

)
.

24 isomorph((N1, E1, L1),(N2, E2, L2)) ←
25

(
∃SO F [N1:N2]: (∀ y [N2]: ∃ x [N1]: F(x)=y) ∧

26 (∀ x [N1] y [N1]: x 6= y =⇒ F(x) 6= F(y)) ∧
27 (∀ x [N1] y [N1]: E1(x, y) =⇒ E2(F(x), F(y))) ∧
28 (∀ x [N2] y [N2]: E2(x, y) =⇒ ∃ fx [N1] fy [N1]: E1(fx, fy) ∧ x = F(fx) ∧ y = F(fy)

)∧
29 (∀ x [N1]: L1(x) = L2(F(x)))

)
.

30 connected(x, y, (N, E, L)) ← E(x, y) ∨ E(y, x).
31 connected(x, y, (N, E, L)) ← ∃ z [N]: connected(x, z, (N, E, L)) ∧ connected(z, y, (N, E,

L)).
32 is_pattern((N, E, L)) ←
33

(
34 (∀ x [N]: (template.node(x) ∧ ∀ y [N] : E(x,y) ⇐⇒ template.edge(x,y)
35 ∧ L(x) = template.labeling(x))) ∧
36 (∀ x [N] y [N]: x 6= y =⇒ connected(x, y, (N,E,L)))∧
37 (#{ Pos : positive(Pos) ∧ homomorph((N,E,L), Pos) } ≥ N+) ∧
38 (#{ Neg : negative(Neg) ∧ homomorph((N,E,L), Neg) } ≤ N−)
39

)
40 }
41 ∀P [graph] : canonical_pattern(P) =⇒ is_pattern(P).
42 ∀P [graph] P2 [graph] : canonical_pattern(P)∧canonical_pattern(P2)∧P6=P2 =⇒ ¬isomorph(P

, P2).
43 }

The great similarity between Lines 37 and 38 shows that our proposed higher-
order specification satisfies this property.

4. We want to be able to find multiple, non-isomorphic, patterns.
The definition of canonical_pattern/1, and the definition of is_pattern/1 as a
set of pattern graphs allows us to express the problem independent of the number
of patterns we want to mine.

5. We want to express constraints such as connectedness of the different nodes in
the pattern.
The concept of inductive definitions, as used in Lines 30-31 of Listing 1 shows
that we can express constraints such as connectedness in an easy way.

We also identify some desirable properties for the systems solving a good KR
specification of the graph mining problem:

12 Matthias van der Hallen et al.

6. We want to perform multiple inferences on the problem, with only minimal
changes to the model. In other words, the system should be elaboration tolerant
with respect to other inferences, as well as new constraints.
For example, we might not be interested in just any set of patterns, instead
we might want a set of 5 patterns such that they share the highest number of
nodes.

7. We prefer specification(s) which can (together) be solved in a single solver call.
While specifications are preferably modular to make it easier to reuse them,
ideally the composition of specifications would be solvable by a single solver
call, requiring no procedural code to tie them together.

The higher-order encoding above satisfies the different properties we identify
for a modeling; as such we view it as a preferred way of encoding the graph mining
problem. Nevertheless, state-of-the-art specification systems either do not accept
such specifications, or, e.g., ProB, miss the flexibility of multiple inferences or
the performance [23] of techniques such Conflict Driven Clause Learning (CDCL)
which can (up-to exponentially) reduce the search space by learning new clauses
when encountering conflicts and backjumping.

In the next section, we explore which encoding techniques enable us to write a
working specification for the graph mining problem in state-of-the-art specification
systems: IDP and ASP in particular.

4 First-order encodings of Graph Mining

In the previous section, we have shown how graph mining could be specified in
a system which supports higher-order logic. In this section, we investigate how
state-of-the-art KR systems without support for higher-order logic, such as IDP
and ASP, can model the graph mining problem, paying special attention to the use
of encoding techniques, which might be used in the future to support higher-order
logic in general.

4.1 IDP

First, we will explore how we can encode the graph mining problem in a state-
of-the-art first-order solver such as IDP. We base ourselves on the mathematical
specification of graph mining introduced in Section 2, as well as the higher-order
specification explored in Section 3.

4.1.1 Existential Second Order

The IDP language allows problem specifications written in first-order (FO) the-
ories T , extended with types, arithmetic, aggregates, and inductive definitions.
Listing 2 shows an example. The symbols in these theories can be quantified lo-
cally, or quantified implicitly in the vocabulary V . Symbols quantified locally can
only be propositional, whereas the vocabulary can contain first-order symbols such
as functions or predicates (making the vocabulary a second-order object).

In the graph mining problem, we are looking for an interpretation I of the
symbols in vocabulary V such that I satisfies T, called a model. This corresponds

Knowledge Representation Analysis of Graph Mining 13

Listing 2: IDP example using inductive definitions
1 vocabulary V{
2 type node
3 edge(node, node)
4 connected(node, node)
5 }
6 theory T : V {
7 ∀n[node] : ∃n2[node] : edge(n, n2) ∨ edge(n2, n).
8 {
9 connected(x, y) ← edge(x, y) ∨ edge(y, x).

10 connected(x, y) ← ∃z [node] : connected(x, z) ∧ connected(z,y).
11 }
12 }
13 structure S : V{ node = {1;2;3} }
14 structure Result : V{
15 node = {1; 2; 3}, edge = {1,1; 1,2; 2,3}
16 connected = {1,1; 1,2; 1,3; 2,1; 2,2; 2,3; 3,1; 3,2; 3,3}
17 }

to existential quantification of all (including FO) symbols in V . Listing 2 shows
an example of how IDP extends a given interpretation S into a model Result.
Due to the existential quantification of symbols in V , and the lack of locally
quantifiable FO symbols, IDP is limited to model expansion for existential second-
order problems, which does not include graph mining. We now expand on the
underlying shortcomings, and how to sidestep them.

Inferences One of the main philosophies of IDP is its underlying Knowledge Base
paradigm [14]. Essentially, this paradigm states that a modeller should model the
knowledge within a problem domain, without thinking of how data will flow when
solving specific queries, or wondering which inference will be performed. Instead, it
should be possible to perform various inferences on a single, unchanging specifica-
tion of the graph mining problem. For example, the most straightforward inference
in the case of graph mining would likely be model expansion. Listing 2 shows how
model expansion would expand the structure S into the structure Result. Other
inferences of interest for the graph mining problem are, for example, optimization.
Optimization would allow us to, e.g., minimize or maximize over the number of
nodes in the pattern graph, or the number of nodes in the pattern with a certain
label, with only minimal changes to the specification.

Definitions versus Constraints A main feature of the IDP language is that it sup-
ports FO formulas as well as a rule-based definition constructs (between curly
braces). The FO formulas express open world knowledge while definitions express
closed world knowledge and can be used to express inductive or recursive defini-
tions such the definition of connected/2 in Listing 2.

This follows from the use of the well-founded semantics underlying the defi-
nition construct. In IDP, the theory of two atomic FO axioms e1(1,2). e1(2,1).

expresses the open world knowledge that (1,2) and (2,1) belong to the predicate
e1/2, while the definition {e1(1,2). e2(2,1).}, written with brackets, expresses a
definition by exhaustive enumeration, hence the closed world knowledge that e1

is the set (1,2), (2,1). E.g., the first does not entail that (1,1) does not belong to
e1/2, while the definition does. The theory in Listing 2 expresses that connected

14 Matthias van der Hallen et al.

is the transitive closure of the edge relation, and that the connected relation is the
total relation. The combination of definition and axiom induces a strong constraint
on the value of the edge relation.

4.1.2 Modelling the graph mining problem in IDP

In this subsection we identify three main issues encountered when modelling the
graph mining problem:

– the representation of graphs,
– local ∃ quantification over functions, and
– local ∀ quantification over functions.

The paragraphs below discuss each of the issues and provide an overview of the
ways we can currently solve them.

Issue 1: representing graphs First, we must represent the sets of graphs, as speci-
fied in Def. 4. Listing 3 shows how this was done in higher-order logic, defining
a higher-order predicate positive/3 with the node predicate, edge predicate and
labeling function as arguments 3. The first graph consists of nodes 1 (labeled a), 2
(labeled b) and is fully connected. This locally coherent representation preserves
a graph as an independent tuple of predicates and functions. However, IDP’s vo-
cabulary V cannot contain such a second-order symbol.

One possible solution is to replicate for each graph the different characteristic
predicates and functions, as shown in Listing 4, which uses different predicate
names for every part of every graph. Using this solution, encoding a property such
as “In every graph, all nodes have at least two outgoing edges” must be stated
for every graph and its edge predicate explicitly, as no relation exists between the
different edge predicates and label functions:

∀ n[node] : ∃ n1 [node] n2[node] : e1(n, n1) ∧ e1(n, n2) ∧ n1 6= n2.
∀ n[node] : ∃ n1 [node] n2[node] : e2(n, n1) ∧ e2(n, n2) ∧ n1 6= n2.

It is clear that this solution is not a good KR approach. Furthermore, it is unde-
sirable due to the way it scales with growing problem instances: it prohibits the
abstraction (generalization) of knowledge in the theory.

3 Note the use of inductive definitions, in contrast to constraints, as this allows the derivation
of negative knowledge i.e. positive/3 only contains these two graphs and no others.

Knowledge Representation Analysis of Graph Mining 15

Listing 3: Higher-order predicate modeling the set G+ of Def. 4.
{
positive({1,2}, {1,2; 2,1}, {1 7→a; 2 7→b}).
positive({1,2,3}, {1,3; 2,1}, {17→c; 2 7→b; 3 7→a}).

}

Listing 4: Multiple individual global
relations
{
e1(1, 2). lb1(1)=a.
e1(2, 1). lb1(2)=b.
e2(1, 3). lb2(1)=c.
e2(2, 1). lb2(2)=b.

lb2(3)=a.
}

Listing 5: Disjoint union using in-
dexed global relations
{
e(g1, 1, 2). lb(g1, 1)=a.
e(g1, 2, 1). lb(g1, 2)=b.
e(g2, 1, 3). lb(g2, 1)=c.
e(g2, 2, 1). lb(g2, 2)=b.

lb(g2, 3)=a.
}

A more workable solution is to represent each characteristic property, such as
the edge relation, by a single global relation for all graphs, as shown in Listing 5.
This relation behaves the way it should for a specific graph instance based on an
additional argument serving as an identifier for the graph of interest. This global
edge relation now corresponds to the disjoint or tagged union of the graphs’ edge
relations, with tags drawn from a set g of graph identifiers. Generalizing over the
different graphs, we can now encode the property stated above as:

∀ gid[g] : ∀ n[node] : ∃ n1 [node] n2[node] : e(gid, n, n1) ∧ e(gid, n, n2) ∧ n1 6= n2.

Although this representation is the de facto standard way of representing com-
plex objects such as graphs, it is clear that this representation forces us to give
up the local coherence of graph characteristics that was present in Def. 4. For
example, without additional constraints, it is still possible to specify a graph G
only partially, e.g., by providing only an entry in the global edge/3 relation. Note
that the higher-order model from Section 3 allows elegant expression, as it intro-
duces specific terms (tuples and sets) which could elegantly express these graph
characteristics in a way that preserves local coherence.

Issue 2: local ∃ quantification over functions The positive homomorphic property
can be expressed using a count aggregate, as shown in Listing 6. First we quantify
over all example graphs G, or per issue 1, their identifiers, and subsequently express
that there must exist a function F that represents a homomorphism from our
pattern graph P to G.

Listing 6: Quantifying over functions locally.
#{G | G ∈ G+ ∧∃ F : F is a homomorphism from P to G} ≥ N+

However, IDP forbids us from locally quantifying over first-order symbols such as
the function F from Listing 6. We must promote the homomorphic functions to a
symbol in the vocabulary, even though we are only interested in the existence of
a mapping, not its identity. Reusing the disjoint union technique proposed above
avoids the need to introduce a homomorphic function for each example graph

16 Matthias van der Hallen et al.

separately. Note, we introduce a function f/2 representing all homomorphisms,
and explicate its dependency on a specific example graph using an additional
argument gId. In second-order logic, this dependency would follow directly from
the syntactic order of the quantifications.

Listing 7: Globalized existential functions
Vocabulary V {
...
partial f(graphid, vertex):vertex
...
}
...
#{gId | gId ∈ G+ : f(gId) is a homomorphism from P to gId} ≥ N+

While all example graphs have an edge, label, . . . relation, not all example graphs
have a homomorphic function. Therefore, f is not defined for graph identifiers that
correspond to such graphs, meaning f has become a partial function.

By adopting this proposed solution, we can now write an IDP specification
for the graph mining problem handling only the positive constraint, as shown in
Listing 7. Note that without the negative constraint, the problem is of a simpler
nature (it is an NP decision problem). The next issue discusses how we can add
the negative constraint into our IDPmodel.

Issue 3: local ∀ quantification over functions It is possible to restate the negative
homomorphic constraint to deciding that no homomorphism exists for enough of
the negative examples. However, deciding that no homomorphism from one graph
to another exists is a coNP decision problem. As an NP (or Σp1) solver, IDP cannot
solve this problem directly. One might be tempted to simply specify the negative
homomorphic property simply as:
#{g | g ∈ G−: f(g) is a homomorphism from P to g}≤ N−.

However, the IDP solver has no obligation to maximize the number of homo-
morphisms it finds for f, only to satisfy the constraints. Thus, it can choose f such
that it does not represent a homomorphism for a graph g ∈ G−. As our constraints
are satisfied, we are led to believe that our pattern candidate is a valid pattern.

Immerman [24] has shown that this is inherently linked to IDPs limit to Exis-
tential Second Order. Indeed, checking that our pattern P is homomorphic with no
more than N− negative graphs is equivalent with checking that enough negative
examples G exist for which no homomorphism exists (Listing 9). This clearly leads
to a universal quantification over a function variable, which IDP cannot express.

Listing 9: Quantifying over functions locally.
#{g | g ∈ G− ∧ ∀ f : f is not a homomorphism from P to g}

A way to work around this is by encoding the dual (i.e., negated) problem,
and conclude that the problem is satisfied if and only if no model exists for the
dual problem. This can be checked using an NP solver. However, this technique
can only be implemented in IDP by writing two theories:
– one (positive) theory T + (see Listing 8), which expresses the positive homo-

morphic property and generates pattern candidates, and

Knowledge Representation Analysis of Graph Mining 17

Listing 8: IDP specification handling the positive constraint of the graph mining
problem

1 vocabulary V_pos{
2 type vertex isa nat
3 type label
4 type graphid
5
6 //Predicates determining the template graph.
7 template_node(vertex)
8 template_edge(vertex, vertex)
9 template_label(vertex):label

10
11 //Predicates describing the pattern graph
12 pattern_node(vertex)
13 pattern_edge(vertex, vertex)
14 pattern_label(vertex):label
15
16 //Predicates describing the positive example graphs
17 example_edge(graphid, vertex, vertex)
18 example_label(graphid, vertex):label
19 N+: int
20
21 partial f(graphid, vertex):vertex //Represents the homomorphisms with the example graphs
22 homo_with(graphid) //True for graphs for which f represents a correct homomorphism
23 connected(vertex, vertex) //connected(a, b) is true if there exists a path
24 //from a to b in the pattern
25 }
26
27 theory Positive:V_pos{
28 //The pattern is a vertex-induced subgraph of the template:
29 ∀x [vertex] : (pattern_node(x) =⇒ template_node(x))
30 ∧ (∀ y [vertex] : pattern_edge(x, y) ⇐⇒ (template_edge(x, y) ∧ pattern_node(x) ∧

pattern_node(y))) ∧
31 ∧ pattern_label(x) = template_label(x).
32 //The pattern is a connected subgraph of the template: From every node in the pattern,
33 //There exists a path to every other node in the pattern.
34 ∀x [vertex] y[vertex] : x 6= y ∧ pattern_node(x) ∧ pattern_node(y) =⇒ connected(x, y).
35 {
36 connected(x, y) ← pattern_edge(x, y) ∨ pattern_edge(y, x).
37 connected(x, y) ← ∃z[vertex] : connected(x, z) ∧ connected(z, y).
38 }
39
40 //Existence of a homomorphic f from the pattern to example graph with graphid gid.
41 ∀gid[graphid] : ∀x[vertex] : homo_with(gid) ∧ pattern_node(x) ⇐⇒ ∃ y[vertex] : y=f(

gid,x).
42 ∀gid[graphid] : ∀x [vertex] y[vertex] : homo_with(gid) ∧ pattern_node(x) ∧ pattern_node(

y) ∧ x6=y =⇒ f(gid, x) 6= f(gid,y).
43 ∀gid[graphid] : ∀x [vertex] y[vertex] : homo_with(gid) ∧ pattern_node(x) ∧ pattern_node(

y) ∧ pattern_edge(x,y) =⇒ example_edge(gid, f(gid,x), f(gid,y)).
44 ∀gid[graphid] : ∀x[vertex] : homo_with(gid) ∧ pattern_node(x) =⇒
45 pattern_label(x) = example_label(gid, f(gid,x)).
46
47 //At least N homomorphisms must be found
48 #{ gid [graphid] : homo_with(gid) } >= N+.
49 }

– one negative theory T −, shown in Listing 10, which expresses the (dual of)
negative homomorphic property and rejects pattern candidates that do not
satisfy this constraint.

In IDP, one must provide procedural code that ties these two theories and their in-
ferences together, allowing pattern candidates to be communicated between them.

18 Matthias van der Hallen et al.

Canonicity As graph isomorphism is known to be in NP (recent research suggests
it is in the Quasi-Polynomial complexity class QP [5]), the isomorphism restriction
when looking for multiple patterns is no more complex than coNP. Therefore, we
can use the same technique of encoding the dual and performing a satisfiability
check that must fail for the canonicity requirement.

However, it is at this point we take into account the evaluation strategy. As
mentioned above, having two separate theories means that we must tie the infer-
ences together using procedural code. This can be done using the Lua interface
made available by IDP. However, using this interface, we cannot prevent having
to reground the theory every time an inference is performed.

Consequently, to minimise the number of times that we must reground the
theories, we choose to introduce a separate theory T iso (shown in Listing 11)
for the canonicity constraint, which generates all isomorphic patterns by finding
values for a unary predicate pattern/1 representing a pattern isomorphic with
pattern_node/1, such that two functions f/1 and g/1 can be found that are each
others inverse and that satisfy the conditions of homomorphisms; i.e. they preserve
edges and labels.

This way, after finding a pattern candidate and checking the positive and neg-
ative homomorphism restriction, we generate all isomorphic patterns and subse-
quently introduce additional clauses in the candidate generation process which
prohibit these patterns from becoming candidates.

4.1.3 Visualising the Constraints

Retaking the example graph mining instance from Section 2 (See Figure 5), which
consisted of 1 positive and 1 negative example, together with a template graph,
and setting the graph mining parameters N+ = 1, N− = 0, we illustrate how
the different constraints affect the possible patterns. We consider a subset of the
candidate pattern space in Figure 6.

(a) Positive Example (b) Negative Example (c) Template Graph

Figure 5: (Repeat) A graph mining instance with (N+ = 1, N− = 0).

First, Lines 28 to 31 of T + (Listing 8) ensure that patterns are vertex-induced
subgraphs of the template. This consists of three subconditions: that (Line 29)
the nodes of a candidate pattern are a subset of the nodes the template graph,
that (Line 30) if the template features an edge between two selected nodes, the
candidates must feature this edge as well, and that (Line 31) a node’s label remains
unchanged.

With the pattern candidates visualised in Figure 6, this constraint prunes
candidate 6a, as it misses the diagonal edge in the hexagon present in template
graph 5c, failing the second subcondition. It also prunes candidate 6d, because the

Knowledge Representation Analysis of Graph Mining 19

Listing 10: IDP specification handling the negative constraint of the graph mining
problem

1 vocabulary V_neg{
2 type vertex isa nat
3 type label
4 type graphid
5
6 //Predicates describing the pattern graph
7 pattern_node(vertex)
8 pattern_edge(vertex, vertex)
9 pattern_label(vertex):label

10
11 //Predicates describing the negative example graphs
12 example_edge(graphid, vertex, vertex)
13 example_label(graphid, vertex):label
14 N−: int
15
16 partial f(graphid, vertex):vertex //Represents the homomorphisms with the example graphs
17 homo_with(graphid) //True for graphs for which f represents a correct homomorphism
18 }
19
20 theory Negative:V_neg{
21 //Existence of a homomorphic f from the pattern to example graph with graphid gid.
22 ∀gid[graphid] : ∀x[vertex] : homo_with(gid) ∧ pattern_node(x) ⇐⇒ ∃ y[vertex] : y=f(

gid,x).
23 ∀gid[graphid] : ∀x[vertex] y[vertex] : homo_with(gid) ∧ pattern_node(x) ∧ pattern_node(y

) ∧ x 6=y =⇒ f(gid, x) 6= f(gid,y).
24 ∀gid[graphid] : ∀x[vertex] y[vertex] : homo_with(gid) ∧ pattern_node(x) ∧ pattern_node(y

) ∧ pattern_edge(x,y) =⇒ example_edge(gid, f(gid,x), f(gid,y)).
25 ∀gid[graphid] : ∀x[vertex] : homo_with(gid) ∧ pattern_node(x) =⇒
26 pattern_label(x) = example_label(gid, f(gid,x)).
27
28 //Can we find more than N− homomorphisms
29 #{ gid [graphid] : homo_with(gid) } >= N−.
30 }

rightmost node’s label has changed into a diamond, and candidate 6e as it has too
many diagonal edges, again failing the second subcondition.

Lines 34-38 prune any candidates that are not connected, such as 6c.
Lines 41-48 prune candidates that do not occur often enough in the positive

examples (for this toy instance, at least once). The constraints of Lines 41-45
ensure that in case homo_with(gid) is true, the following holds: a mapping (1) must
exist, (2) it must preserve inequality, (3) it must preserve the patterns edges, and
(4) it must preserve labels, respectively. Line 48 specifies that enough homomor-
phisms must exist (at least one). As a result, candidates 6d and 6e are pruned, as
no mapping exists for 6e to positive example 5a that preserves the diamond label
and no mapping for 6d preserves all diagonal edges.

Lastly, the negative theory T − (Listing 10) uses the same constraints as T +

Lines 41-48 to find patterns that are homomorph with too many negative ex-
amples. These constraints prune 6f, as a possible mapping was shown earlier, in
Section 2, Figure 3.

4.1.4 Solving the graph mining problem using IDP

Now that we have modelled the graph mining problem in IDP, we also want to
use this model to solve graph mining problems. As our model consists of multiple

20 Matthias van der Hallen et al.

Listing 11: IDP specification handling the canonicity constraint of the graph min-
ing problem

1 vocabulary V{
2 type vertex isa nat
3 type label
4
5 //Predicates describing the pattern graph
6 pattern_node(vertex)
7 pattern_edge(vertex, vertex)
8 pattern_label(vertex):label
9

10 //Predicates describing the template
11 template_node(vertex)
12 template_edge(vertex, vertex)
13 template_label(vertex):label
14
15 //Predicate describing an isomorphic pattern
16 pattern(vertex)
17
18 partial f(vertex):vertex //The homomorphism from pattern_node to pattern.
19 partial g(vertex):vertex //The homomorphism from pattern to pattern_node.
20 }
21
22 theory iso:V{
23 //f and g only have an image for vertices in pattern_node / pattern respectively.
24 ∀x [vertex] pattern_node(x) <=> ∃ y: y = g(x).
25 ∀x [vertex] pattern(x) <=> ∃ y: y = f(x).
26
27 ∀x [vertex]: pattern(x) =⇒ pattern_node(f(x)).
28 ∀x [vertex]: pattern_node(x) =⇒ pattern(g(x)).
29
30 //f and g preserve edges
31 ∀x [vertex] y [vertex]: pattern_node(x) ∧ pattern_node(y) ∧ template_edge(x, y) =⇒

template_edge(g(x), g(y)).
32 ∀x [vertex] y [vertex]: pattern(x) ∧ pattern(y) ∧ template_edge(x,y) =⇒ template_edge(

f(x), f(y)).
33 //f and g preserve labels
34 ∀x [vertex]: pattern_node(x) =⇒ template_label(x) = template_label(g(x)).
35 ∀x [vertex]: pattern(x) =⇒ template_label(x) = template_label(f(x)).
36 //f and g are injective
37 ∀x [vertex] y [vertex]: x < y ∧ pattern(x) ∧ pattern(y) =⇒ f(x) 6= f(y).
38 ∀x [vertex] y [vertex]: x < y ∧ pattern_node(x) ∧ pattern_node(y) =⇒ g(x) 6= g(y).
39 //f and g are each others inverse
40 ∀x [vertex] : pattern(x) =⇒ g(f(x)) = x.
41 }

(a) (b) (c) (d) (e) (f)

Figure 6: A subset of the pattern space for Figure 5.

theories, we must use procedural code to tie together different inferences on the
different theories, to eventually produce the correct answers. From the discussion
above, we identify three main theories:

– T + that generates a pattern, satisfying the positive homomorphic constraint,
– T − that checks the negative homomorphic constraint, and

Knowledge Representation Analysis of Graph Mining 21

– T iso, that generates all isomorphic patterns.

The entire procedural loop can then be described as follows:

1. We first ask IDP for a model of T +.
2. We extract from this model the pattern candidate (i.e. the value of

pattern_node/1, pattern_edge/2 and pattern_label/1) and, using the satisfiability
inference, check whether it satisfies T −; note that as T − encodes the dual of
the negative homomorphic constraint, failing the satisfiability check means the
negative homomorphic constraint is satisfied and vice versa.

3. Regardless of whether the generated candidate satisfied T −, we let T iso gen-
erate all its isomorphic patterns. These can be transformed to clauses that,
when added to T +, prevent generation of isomorphic pattern candidates: such
clauses state that it must not be true that a future generated pattern consists
of exactly those nodes.

4. We repeat this process until the necessary number of patterns was found or
the search space was exhausted.

4.2 ASP

The ASP language is closely related to IDP. An ASP encoding consists of a set of
rules, which allow us to derive the head of a rule whenever its body is true. The
head and body of a rule can contain variables, as long as every variable is safe,
meaning it occurs positively in the body. In this case the head can be derived for
any assignment to the variables that makes the body true.

One of the main differences between ASP and IDP is the choice of semantics:
ASP looks for the answer set models, whereas IDP looks for well-founded models.
Leveraging the minimality property of answer sets, ASP can prevent the invalid
models of the example discussed in Issue 3: local ∀ quantification over functions,
without creating two separate theories or writing procedural code. Instead, it re-
lies on an encoding technique called the saturation technique [17], which we will
discuss in Section 4.2.1 when we discuss how to encode the negative homomorphic
property.

Another difference between ASP and IDP is that the former generally only
allows uninterpreted functions, which can be viewed as constructors that bring
structure in data. However, our specification of the graph mining problem features
many interpreted functions, i.e. those representing a homomorphism between two
graphs. Luckily, we can represent n-ary functions such as pattern_label/1 using an
n+ 1-ary predicate, and express functionality constraints explicitly.

4.2.1 Modeling the graph mining problem in ASP

Listing 12 shows the ASP specification of the graph mining problem. Note that we
use the same naming scheme pattern_node/1, pattern_edge/2 and pattern_label/2,
and introduce the constants np and nm to correspond to the problem parameters
N+ and N−, respectively.

We identify the same three issues for ASP as we had for IDP namely repre-
senting graphs, local ∃ quantification over functions and local ∀ quantification over
functions. Due to the close relation between IDP and ASP, it is not surprising

22 Matthias van der Hallen et al.

that the first two issues are once again solved using the same global disjoint union
technique as explained in the sections discussing the representation of graphs and
the local ∃ quantification over functions in IDP.

However, as ASP does not allow functions, we represent n-ary functions such as
pattern_label/1 using an n+1-ary predicate, and express functionality constraints
explicitly.

Generating pattern candidates As in Listing 8, we will first specify that the pat-
tern is a vertex-induced subgraph of the template (Lines 5-7):
– First, we open up the pattern_node/1 predicate using a choice rule. (Line 5)
– we state that every edge in the template between two pattern nodes implies a

corresponding edge in the pattern.
– we specify that every pattern node preserves the unique label it had in the

template.
As patterns must be connected, we include a set of rules and constraints ex-

pressing that every node of the pattern must be connected to every other node of
the pattern (Lines 10-14). As with IDP, for the earlier introduced toy example
from Figure 5, these constraints filter candidates 6a, 6d, and 6e because they do
not represent vertex-induced subgraphs, and 6c as it violates connectedness.

Positive homomorphisms First, we will look at the positive homomorphic con-
straint, specifying the necessary number of homomorphisms with positive exam-
ples. First, we guess for every positive example graph whether a homomorphism
exists using a choice rule (Line 17), and represent these graphs using homo_with(G).
For every positive graph G with a homomorphism, we create a mapping f(G,X,V) re-
lating a graph id G and pattern node X with exactly one example node V (Line 18).
We introduce constraints such that, for each positive example graph with a ho-
momorphism, the mapping must be injective and must preserve edges as well as
labels (Lines 20-22). We conclude the positive constraint by specifying that the
number of mappings that correspond with a homomorphism should be higher or
equal to our threshold N+ (Line 24). Again, this constraint filters candidates 6d
and 6e.

Negative homomorphisms We now look at how to encode the negative homomor-
phic constraint, which specifies that the number of homomorphisms with negative
graphs does not exceed N−. To encode this in the same model, we use the satura-
tion technique as mentioned earlier.

First, we again specify that each pattern node X is mapped to at least one
example node V (Line 27). Essentially, Line 27 serves to guess a possible mapping
f/1: this is often called Pguess in discussions of the saturation technique. Note that
we do not impose an upper limit on the number of example nodes V which match
with X, as we did for the positive homomorphism (Line 18). This is essential for
the saturation technique: while using this rule (Line 27) can derive a one-to-one
mapping from pattern nodes to template nodes, the rule does not prohibit a larger
mapping.

Our next rule will allow the derivation of such a larger mapping: we introduce
a predicate called saturated/1 which will be true for those negative graphs G for
which no homomorphism exists. When no homomorphism for a graph G exists,
we specify that the matching function f/3 should match every pattern node X

Knowledge Representation Analysis of Graph Mining 23

with every example node V (Line 28). This way, f/3 becomes so large that it
is impossible that f/3 belongs to the minimal answer set unless there does not
exist a homomorphism from the pattern to this (negative) example graph. This
is commonly referred to as Psat : it describes how the guessed predicate will ‘blow
up’ when no correct guess exists. Due to this ‘blowup’, the minimality property of
answer sets means the solver will look for an f that represents a homomorphism
for as many of the negative example graphs as possible.

We continue the encoding of the negative constraint by specifying the possible
reasons a mapping does not represent a homomorphism (Lines 32-36). Either the
mapping is not injective, or it does not preserve edges or labels: These lines are
commonly referred to as Pcheck .

Lastly, we specify that the pattern is allowed to be homomorphic with at most
N− negative examples (Lines 38-39). In our toy example, this prunes candidate
6f.

Canonicity The same saturation technique can be applied to the isomorphism
restriction; making it possible to model the entire graph mining problem in a sin-
gle model. We also introduce the notion of a lexicographical ordering of graphs,
based on the natural order of the nodes: we presume the #max and #min aggregates
on nodes are defined, and a successor predicate succ/2 is available that holds for
any two nodes a, b s.t. b immediately follows a in this natural order. A graph G
is lexicographically smaller than a graph G’ if the smallest node not shared be-
tween G and G’ is a node of G. We can now say that a pattern P is canonical
if it is the lexicographically smallest graph among all its isomorphic graphs. The
main idea is that for every choice for pattern_node/1, we want ASP to find an iso-
morphism with another subset of template nodes that is lexicographically smaller
(i.e. a counterexample for the statement that pattern_node/1 is canonical). If ASP
cannot find such an isomorphism, we saturate the answer set. Thus, saturated an-
swer sets correspond to choices for pattern_node/1 s.t. no lexicographically smaller
isomorphic graph exists, which are exactly the canonical patterns.

Looking at our model (Lines 42-45), to enforce canonicity we again guess a
relation, in this case iso/2. Semantically, iso/2 is the predicate representation of a
function between nodes of the pattern and nodes of a hypothetical, different and
canonical form of that same pattern. Such a function does not exist if the pattern
itself is, in fact, canonical: In that case iso/2 will be saturated.

Because we only want answer sets that correspond to canonical patterns, after
including the saturation rule Psat (28) for iso/2, we add a constraint saying that
all answer sets must be saturated. Furthermore, we create two helper predicates:
– isoNode/1 which is true for those nodes in the image of iso/2, and
– compl/1 which is true for those nodes not in the image of iso/2.

Because in some situations we will saturate iso/2, we cannot define compl/1

as compl(X):-not isoNode(X), as this would make the resulting saturated answer
set unstable (The rules deriving compl would disappear from the Gelfond-Lifschitz
reduct).

Therefore, we define by induction a helper predicate codCT(X,Y) which is true
iff X is not the unique image of Y or any smaller node. Note that we do this without
negation of any saturated symbols (iso/2, isoNode/1).
1. This trivially holds for the smallest node F if it is not a pattern node, as then

F is not in the domain of iso/2 (Line 51).

24 Matthias van der Hallen et al.

2. This holds for the smallest node F if iso/2 maps F to a node differing from X

(Line 52).
3. This holds by induction for the tuple (X,Y) if it holds for the node preceding Y

and either Y is not a pattern node (Line 53) or Y is mapped to a node differing
from X (Line 54).

We can now define compl as the nodes X s.t. codCT holds for the largest node, i.e. it
is not the image of the highest node or any below it.

Next, we must specify when we saturate (Pcheck). This occurs whenever iso/2

does not represent an isomorphism (because it does not preserve edges, labels, or
is not injective), or when iso/2 represents an isomorphism with a graph that is
not lexicographically smaller. To encode this last condition, we define by induction
(Lines 71-75) a predicate identity_below/1 which indicates that up to, but not in-
cluding a certain node, pattern_node/1 and isoNode/1 are identical. Now, whenever
there exists a node such that pattern_node/1 and isoNode/1 are identical up to that
node, and that node itself is part of pattern_node/1 but not of isoNode/1 (expressed
by the complement compl/1), we must saturate. Likewise, we must saturate when-
ever pattern_node/1 and isoNode/1 are identical, which we handle in Lines 66 and
74-75.

Saturation technique Saturation as a technique is a powerful way of including con-
straints that are expressed using formulas with second-order universal quantifica-
tion (i.e. corresponding to Σp2 decision problems). Examples of such constraints
are the introduction of negative example graphs or the canonicity of patterns as
discussed above, but also other constraints that impose a preference order on pat-
terns, e.g. maximality (prevents patterns that are subsets of other patterns) or
coverage (orders patterns by comparing the set of matched positive patterns using
subset ordering). While the saturation technique successfully prevents the need of
a procedural loop for such constraints, it is clear that this technique is not derived
from a natural KR translation of the Graph Mining definition.

4.2.2 Solving the graph mining problem using ASP

As ASP is able to represent the graph mining problem using a single model,
solving the graph mining problem using ASP is pretty straight-forward. However,
it is important to note that by default, finding a different homomorphism between
a canonical pattern and an example would lead to a different answer set. However,
as the pattern itself is the same, this is in fact not a new solution. As such, we must
limit the answer sets to those that differ for their choice of pattern nodes. Using a
solver such as clingo, this is possible by enabling answer set projection [20], which
limits the different answer sets to those that differ on a specific set of facts. By
specifically projecting to the facts representing the pattern nodes, we obtain the
desired behavior.

4.3 Comparative Summary

In Section 3.3, we have identified a set of desirable properties that a good KR
specification should satisfy. Table 1 summarizes how IDP and ASP score with
respect to these properties.

Knowledge Representation Analysis of Graph Mining 25

Listing 12: ASP using the saturation technique
1 #const nm = N−.
2 #const np = N+.
3
4 % Patterns are vertex-induced subgraphs of the template
5 0 { pattern_node(X) } 1 :- template_node(X).
6 pattern_edge(X, Y) :- pattern_node(X), pattern_node(Y), template_edge(X, Y).
7 pattern_label(X, V) :- pattern_node(X), template_label(X, V).
8
9 % Patterns are connected

10 connected(X) :- #min{Y : pattern_node(Y)}=X.
11 connected(Y) :- connected(X), pattern_edge(X, Y), X != Y.
12 connected(Y) :- connected(X), pattern_edge(Y, X), X != Y.
13
14 :- pattern_node(X), not connected(X).
15
16 % Positive homomorphic constraint:
17 homo_with(G) | not homo_with(G) :- positive(G).
18 1 { f(G, X, V) : example_node(G, V) } 1 :- homo_with(G), pattern_node(X).
19
20 :- homo_with(G), pattern_node(X), pattern_node(Y), X != Y, example_node(G, V), f(G, X, V),

f(G, Y, V).
21 :- homo_with(G), f(G, X, V1), f(G, Y, V2), template_edge(X, Y), not example_edge(G, V1, V2)

, pattern_node(X), pattern_node(Y).
22 :- homo_with(G), pattern_node(X), f(G, X, V), pattern_label(X, L), example_label(G, V, L2),

L != L2.
23
24 :- #count{G:homo_with(G)} < np.
25
26 % Negative homomorphic constraint:
27 f(G, X, V) : example_node(G, V) :- pattern_node(X), negative(G). % Pguess
28 f(G, X, V) :- saturated(G), pattern_node(X), example_node(G, V). % Psat
29
30 % The following lines describe the reasons for a graph to be saturated (Pcheck):
31 % We cannot map two different pattern nodes to the same example node.
32 saturated(G) :- negative(G), f(G, X, V), f(G, Y, V), X != Y, pattern_node(X), pattern_node(

Y).
33 % The mapping must preserve edges.
34 saturated(G) :- negative(G), template_edge(X, Y), f(G, X, V1), f(G, Y, V2), not

example_edge(G, V1, V2), pattern_node(X), pattern_node(Y).
35 % The mapping must preserve labels.
36 saturated(G) :- negative(G), template_node(X), f(G, X, V), template_label(X, L),

example_label(G, V, L2), L != L2.
37
38 neg_homo_with(G) :- not saturated(G), negative(G).
39 :- #count{G:neg_homo_with(G)} > nm.
40
41 % Canonicity constraint:
42 iso(X, V) : template_node(V) :- pattern_node(X). % Pguess
43 iso(X, V) :- pattern_node(X), template_node(V), sat. %Psat
44 :- not sat.
45
46
47 isoNode(V) :- iso(X, V).
48 compl(X) :- template_node(X), codCT(X, M), M=#max{Z:template_node(Z)}.
49
50 %codCT(X,Y): X is not the image of iso for Y or any node below it
51 codCT(X, F) :- template_node(X), not pattern_node(F), F=#min{Z:template_node(Z)}.
52 codCT(X, F) :- template_node(X), iso(F, Y), Y!=X, F=#min{Z:template_node(Z)}.
53 codCT(X, B) :- template_node(B), succ(A, B), codCT(X, A), not pattern_node(B).
54 codCT(X, B) :- template_node(B), succ(A, B), codCT(X, A), iso(B, Y), Y!= X.
55
56 % iso must preserve edges
57 sat :- iso(X, W), iso(Y, Z), template_edge(X, Y), not template_edge(W, Z).
58 sat :- iso(X, W), iso(Y, Z), not template_edge(X, Y), template_edge(W, Z).
59 % iso must preserve labels
60 sat :- iso(X, Y), template_label(X, L1), template_label(Y, L2), L1!=L2.
61 % iso must be injective
62 sat :- iso(X, Y), iso(X, Z), Y!=Z.
63 % The inverse of iso must be injective
64 sat :- iso(X1, Y), iso(X2, Y), X2!=X1.
65 sat :- identity_below(X), pattern_node(X), compl(X).
66 sat :- identity_below(sup).
67
68 % identity_below(X) iff every node below (not including) X is either
69 % - in the iso candidate and the pattern, or
70 % - not in the iso candidate nor in the pattern.
71 identity_below(M) :- #min{X:template_node(X)}=M.
72 identity_below(X) :- template_node(X), succ(Y, X), identity_below(Y), pattern_node(Y),

isoNode(Y).
73 identity_below(X) :- template_node(X), succ(Y, X), identity_below(Y), not pattern_node(Y),

compl(Y).
74 identity_below(sup) :- identity_below(M), #max{X:template_node(X)}=M, pattern_node(M),

isoNode(M).
75 identity_below(sup) :- identity_below(M), #max{X:template_node(X)}=M, not pattern_node(M),

compl(M).
76
77 #show pattern_node/1.

26 Matthias van der Hallen et al.

Property IDP ASP
1. Graph as a single

object
No: Global disjoint
union technique

No: Global disjoint
union technique

2. Independence of
homomorphisms

No: Global disj. union
& partial function

No: Global disj. union
& partial function

3. Similarity of ≥ and
≤ constraint

Partial: Similar but
theory splitting

required

No: Requires
saturation technique

4. Multiple patterns
(isomorphism)

No: theory splitting
required

Yes: Using saturation
technique

5. Connectedness Yes: Using inductive
definitions

Yes: Using ASP rules

6. Multiple inferences Yes: Model checking,
expansion,

minimization

Yes: Model checking,
expansion,

minimization
7. Single solver call No: Two calls, one

model per pattern
Partial: One answer set

per pattern

Table 1: Summary of the desirable properties in IDP and ASP

4.4 Performance experiments

In this section, we will investigate the performance of both the IDP as well as the
ASP model. These experiments were performed on a Ubuntu 16.04 LTS system
with an Intel i7-4770 CPU @ 3.40GHz, with 8GB RAM, on which IDP (version
3.7.0) and Clingo (version 5.2.2) were installed. Every experiment was run with
an 8 GB memory limit and a 20 hour time limit.

We created graph mining problem instances from two well-known machine
learning datasets [38]: mutagenesis and yoshida. These datasets consist of a set of
labeled graphs representing labeled molecules;

– in yoshida 265 molecules are ranked according to their bioavailability, and
– in mutagenesis, 230 molecules are trialed for their mutagenicity on Salmonella.

Most discussions of state-of-the-art specialized algorithms do not use any neg-
ative examples. However, the mutagenesis dataset allows us to characterize 92
molecules as ‘negative’, specifically those who inhibit the mutability of Salmonella
(i.e. a mutagenicity of ≤ 1). As our specifications easily accommodate a dataset
with negative examples, we create graph mining instances from the yoshida and
mutagenesis datasets by randomly selecting one positively labeled graph from the
dataset to serve as the template required for our solution. Next, we chose values for
N+ and N−: For yoshida, which only has positive examples, we chose an N+ value
of 26 (10% of the dataset). For mutagenesis we chose an N+ of 90 (66% of the
positive examples) and 30 (33% of the negative examples). We used both the ASP
and the IDP solution to compute 120 canonical (i.e. non-isomorphic) patterns.

4.4.1 Results

Yoshida: The results for the yoshida dataset are visualised in Figure 7 (Note
the need for different scales). Since IDP as a byproduct, can list all isomorphic
solutions for each canonical pattern, we could and have cross-validated the results
of both solvers.

Knowledge Representation Analysis of Graph Mining 27

0 20 40 60 80 100 120
pattern #

2 × 101

3 × 101

4 × 101

6 × 101

se
co

nd
s

Cumulative time ASP [Yoshida].
ASP

0 20 40 60 80 100 120
pattern #

102

103

104

se
co

nd
s

Cumulative time IDP [Yoshida].
IDP

Figure 7: Cumulative run times for the Yoshida dataset.

0 20 40 60 80 100 120
pattern #

103

104

se
co

nd
s

Cumulative time ASP [Mutagenesis].
ASP

Figure 8: Cumulative ASP run time for the mutagenesis dataset.

It is clear that the ASP solution, which utilizes a single solver process, out-
performs the IDP system, which must repeatedly ground the same problem due
to the interaction of generating pattern candidates satisfying the positive homo-
morphic constraint and checking canonicity of pattern candidates. As the yoshida
dataset only contains positive examples, we can also illustrate the performance
of state-of-the-art specialized algorithms. However, specialized algorithms such as
gSpan generally mine all patterns, and do this without requiring a specific tem-
plate graph: it can use any graph in the database as a template. As such, we
have mined all patterns for our yoshida instance; this takes about 1.39 seconds
for gSpan [36]. Comparatively, when Clingo (ASP) and IDP are asked to mine all
patterns, ASP takes about 282.5 seconds, whereas IDP does not finish within the
time limit of 20 hours.

Mutagenesis: When mining the mutagenesis dataset for patterns with N+ = 90
and N− = 30, IDP does not find any patterns before the time limit of 20 hours
has passed. The results for ASP are shown in Figure 8, which mines 120 patterns
in a little under four hours.

28 Matthias van der Hallen et al.

4.4.2 Discussion

It is clear from these experiments that state-of-the-art specialised algorithms out-
perform our declarative solutions by several orders of magnitude. However, our
declarative solutions can easily be extended to support negative examples, such as
those in the mutagenesis dataset, whereas specialised algorithms require an exten-
sive overhaul. This is an example of the level of Elaboration Tolerance [33] that
declarative languages exhibit. This gives declarative approaches a great benefit
in use cases where performance is not the primordial factor, for example while
prototyping or when requirements frequently change.

These experiments also show a clear divide between the ASP language and the
IDP language. While ASP solvers can natively support constraints with universal
second-order quantification (i.e. Σp2), IDP must resort to multiple solver instances
tied together using procedural code. As a result, IDP must ground the problem
repeatedly and, as communication between the solver instances is limited, is not
able to learn valuable information about when a candidate will or will not pass
the checks performed by different solver instances. On the other hand, constraints
featuring second-order universal quantification are only supported by ASP using
the advanced saturation technique, reducing the ‘naturality’ of the encoding. In
the next section, we reconsider the higher-order model of Section 3, and look how
declarative systems, in particular IDP, can introduce support for such higher-order
models.

5 Solver Techniques

In the previous sections, we have established that (1) an intuitive encoding of
the graph mining problem exists using higher-order logic, and that (2) encoding
techniques are required to express the problem in a specification language based on
first-order logic. Regrettably, these encoding techniques decrease the graph mining
model’s intuitiveness and can be a significant hurdle for the modeller. This section
investigates the encoding techniques encountered in Section 4 so as to identify
ways to generalise these techniques and integrate them in the solver, effectively
shifting the burden of these techniques from modeller to solver by supporting
higher-order specifications. Specifically, integration techniques are suggested for
the state-of-the-art IDP-system, which currently uses a typical ground-and-solve
technique [26]. In a ground-and-solve system, two distinct phases can be identified:
in the first phase, all quantifications are instantiated such that the encoding does
not contain any variables, while in the second a SAT-solver finds a model for the
resulting ground instance. In general, techniques that support higher-order logic
will interleave these two phases in various degrees.

One concern typically raised in the context of solver for higher-order logic is
that rising language expressivity will go hand in hand with decreasing performance.
From a theoretical point of view, this is clearly a valid concern, however our
hypothesis is that, in practice, expressing real-world problems using higher-order
logic does not necessarily include a performance loss with respect to their previous
first-order encodings. Furthermore, the additional structure expressed in higher-
order encodings might even allow for a performance gain. Specifically, an important
aspect through which we think a higher-order encoding, when supported with

Knowledge Representation Analysis of Graph Mining 29

Listing 13: Excerpt of the HO specification of graph mining
1 homomorphism((N1, E1, L1), (N2, E2, L2)) ←
2

(
∃SO F [N1:N2]: (∀ x, y [N1]: x 6= y =⇒ F(x) 6= F(y)) ∧

3 (∀ x [N1] y [N1]: E1(x, y) =⇒ E2(F(x), F(y))) ∧
4 (∀ x [N1]: L1(x) = L2(F(x)))

)
.

5 ...
6 (#{ Pos : positive(Pos) ∧ homomorphism((N,E,L), Pos) } ≥ N+)
7 ...

the right solver techniques, can in increase performance is independence analysis,
i.e. the discovery of independent subproblems. Some support for the claim that
better independence analysis will lead to better performance can be found on the
propositional level, in recent work [31,37] from the Quantified Boolean Formulas
(QBF) research community. This work shows the benefit of estimating or learning
the dependencies between quantifications of propositional variables. Writing down
knowledge in a more expressive language such as higher-order logic leads to the
availability of additional structure and latent constraints within the knowledge
specification. Often, using the additional structure available, we already express
many interesting (in)dependencies. Consider the following two examples: First,
when we existentially quantify over a (set of) higher-order object(s) satisfying a
constraint, we can look for this (set of) object(s) independently from the larger
problem. Second, in the case of a universal quantification of a higher-order object,
we can check the relevant constraints for every possible instantiation of this higher-
order quantification separately.

Returning to the higher-order modelling of graph mining, for example, it is
clear that the question of whether two specific graphs match is a subproblem which
can be solved independently of other matchings. This independence is signalled by
the quantification over graphs (N,E,L) (Line 6 of Listing 13), even though it
is hidden in the aggregate expression counting homomorphisms. Further evidence
of the independence can be found in the definition of homomorphism/2, as it uses
only two types of symbols: locally quantified symbols and predicate arguments.
A smart solver should analyse the higher-order specification to detect and exploit
these (in)dependencies, and, when discussing solver techniques, we will pay specific
attention to how this can be achieved.

5.1 Nested Solvers

As was pointed out in Section 4, two of the main issues with higher-order en-
codings for systems such as IDP are (1) the ∀ quantification over higher-order
objects such as functions and predicates, and (2) the occurrence of local quan-
tification, both existential as well as universal. The technique of nested solvers
addresses both these issues: when presented with a universal quantification or any
local quantification over a function or predicate, the solver can spawn another,
secondary instance of itself which is identical except for the specification being
solved. Indeed, this second instance, also called an oracle is initialised with that
part of the original specification where the quantified symbol is in scope, possibly
transformed to an existential quantification.

30 Matthias van der Hallen et al.

At the propositional level, Bogaerts et al. [6] recently explored the idea of
solving QBF instances using nested SAT solvers supporting CDCL, with favourable
results. Their underlying idea is to use the identity ∀x : φ1 ⇔ ¬∃x : ¬φ1 to
transform arbitrary formulas to the form ∃x : (phi ∧¬∃y : ψ). They show how the
top solver can perform standard SAT-solver propagation on φ, and how the second
solver (the oracle) can check whether there exists an assignment y satisfying ψ. It is
important to note that as the transformation above introduces negations in front
of the quantification ∃y, the oracle call is performed within a negative context:
modelsM of Oψ are transformed into conflicts and learned clauses C for the top
solver. This approach effectively construes a QBF solver, and as predicted, this
technique can exploit (in)depencies. While QCDCL [32] traditionally limits the
order in which variables can be decided to the order in which they are specified
in the quantifier prefix, this restriction is not necessary when working with nested
solvers, opening up research tracks on the effects of eager versus lazy calling of
the nested solver, or the effect of splitting up variables within a single quantifier
prefix level if they are independent.

This technique, taken from the propositional level, can be recreated at the pred-
icate level by rewriting and splitting theories and handing them off to separate,
nested solvers functioning as oracles. As on the propositional level, we are faced
with the same trade off between eager and lazy calling of nested solvers. Another
research challenge is the transformation of modelsM to learned clauses C: as mul-
tiple models for the oracle’s theory can exist, one can follow different approaches
for transforming one or more models of the theory into a learned clause.

On the level of predicate level, the nested solver technique is closely re-
lated to “modulo-theory” frameworks such as SAT-modulo-theory or ASP-modulo-
theory [19]. These frameworks offer a way of injecting procedural code for com-
plex problems using global constraints. One example is the injection of prefix-
projection [27] in recent declarative approaches to sequential pattern mining [4].
By contrast, the nested solvers technique does not inject procedural code, instead
it injects another solver instance (an oracle). Thus, in the nested solver approach,
even the injected knowledge is specified declaratively, and, in a full implementation,
the split points between the levels of solvers are introduced without involvement
of the user.

Nested solvers in Graph Mining: Turning back to graph mining, and looking only
at the positive homomorphism requirement and the non isomorphism requirement,
we identify three different strategies for introducing oracle calls to the graph mining
problem. These three strategies correspond to different options for splitting the
graph mining specification, and we will call these strategies the monolithic, the
semi decomposed and the fully decomposed strategies. All three are visualised
in Figure 9, where every (sub)solver or oracle call is represented as an IDP block,
and the different positive example graphs are labeled as Ex1, Ex2 and Ex3. In
each case, the main or top-level solver is the leftmost IDP block, responsible for
generating candidates.

– The monolithic strategy is the default strategy as explained in Section 4.2.2.
As such, this strategy could only gain from a tighter integration between solver
instances, which would allow reuse of grounding and efficient communication
of learned clauses.

Knowledge Representation Analysis of Graph Mining 31

This strategy splits off the generation of a pattern candidate and checking
the positive homomorphism constraint, from the non isomorphism check. It
thus consists of only two solver instances: one that takes the template and
all example graphs, subsequently producing a pattern candidate satisfying the
positive constraint; and one that, using the other patterns, checks whether a
pattern candidate is isomorphic to an already discovered pattern. This second
solver then reports back to the first, and the necessary clauses are generated
to prevent generating the same pattern candidate again.

– The semi decomposed strategy further splits off the generation of a pattern
candidate from the test phase where the solver checks whether the pattern can-
didate is homomorphic with sufficiently many positive example graphs. Based
on the outcome of this check, the solver either reports back to the first solver
which can register that the pattern candidate was not a valid pattern and gen-
erates the necessary clauses to prevent regeneration, or it passes the pattern
candidate on to a third solver performing the non isomorphism check as in the
case of the monolithic strategy.

– the fully decomposed strategy exploits the independence between the dif-
ferent positive example graphs; it introduces a separate oracle call for each
example graph, reporting the results of the checks to an aggregation unit.
This aggregation unit then reports back to either the first solver or to another
solver performing the non isomorphism check as in the case of the monolithic
strategy.

Note that all three strategies split the theory on points where quantifications
are used within the theory; in fact, they each correspond to a splitting strategy :
– The monolithic approach splits only when encountering a second-order uni-

versal quantification, which would put the problem outside of the expressive
power of a conventional SAT solver.

– The fully decomposed approach splits the theory when encountering any
second-order quantification; this includes the existential second order quantifi-
cation present in the definition of homomorphism/2 in Listing 13.

– The semi decomposed approach splits the theory on the outermost quantifi-
cation for any rule containing any second-order quantification.

As it is possible that after splitting, the theory being split off still contains for-
mulas with second-order quantifications, the splitting rules must be performed
recursively.

Experiments: To get an idea of the performance of the nested solvers technique,
and whether it might lead to some performance gains, we mimicked the implemen-
tation of a nested solver, without implementing a fully functional nested solver. By
introducing a ‘pipeline’ of separate IDP3 call instances, our implementation repli-
cates the different oracle calls in the nested solver approach, while being specifically
tailored to graph mining. It uses an imperative language to manage the different
calls and modify the modelsMψ of oracle calls to new clauses Cψ added to sub-
sequent calls.

For each strategy proposed above, we have introduced a corresponding
‘pipeline’ in the experiments. The experiment is set up such that every pipeline
mines a certain amount of patterns from a dataset. Like most imperative solutions,
they do this in a fixed order: first patterns of length n are mined, starting with

32 Matthias van der Hallen et al.

Phase
Fu

lly
de
co
m
po

se
d

Se
m
i
de
co
m
po

se
d

M
on

ol
it
hi
c

St
ra
te
gy

Candidate generation Positive constraint No isomorphism constraint

Template IDP IDP

Ex1 Ex2

Ex3

Pattern

Clauses

Template

IDP IDP IDP

Ex1 Ex2

Ex3

Candidate Pattern

Clauses

Invalid

Template

IDP IDP

IDP

IDP

IDPAgg

Ex1
Ex2

Ex3

Candidate Pattern

Clauses

Invalid

Figure 9: The three different strategies proposed for subsolvers.

n = 2, raising the length of the mined patterns to n+ 1 whenever all patterns of
length n are mined. This fixed order allows exploitation of an anti-monotonicity
property often used by imperative solutions: Whenever a pattern candidate fails
the positive homomorphism check, every extension of this pattern candidate will
also fail the positive homomorphism constraint.

This property can easily be encoded as additional knowledge in a higher-order
specification of the graph mining problem, as it defines a predicate isPattern/1

representing whether or not a graph G is a pattern. When we look at the proposed
strategies, both the semi and fully decomposed pipeline capture the necessary
information for exploiting the anti-monotonicity property: they signal both the
valid as well as the invalid pattern candidates through the imperative interface
managing the different oracle calls. However, the monolithic pipeline does not;
invalid pattern candidates are discarded internally in the solver instance handling
candidate generation and the positive constraint. As a result, the invalid pattern
candidates of length n cannot be used by the monolithic pipeline to additionally
filter the candidate generation when it starts searching for patterns of length n+1.
As a result, the monolithic pipeline does not exploit the anti-monotonicity prop-
erty, but also does not impose a search direction, which can become an advantage
for certain datasets.

Dataset generation & specifications: To test the performance of all three pipelines,
we have reused the yoshida dataset from Section 4.4, and have modified the muta-
genesis dataset by labeling all molecules as positive. This modification is motivated
by two key insights:

Knowledge Representation Analysis of Graph Mining 33

1. Specialized algorithms do not feature negative examples,
2. When splitting the model into multiple theories solved by separate oracles, the

theory for negative examples is the same as that for the positive examples.
The only difference is how the satisfiability results are handled: for negative
examples, an UNSAT is handled as a SAT for the positive examples and vice
versa.

Lastly, we have also created a graph mining problem from the well known
bloodbarr dataset [30], where 413 molecules are ranked according to the degree to
which the molecule can cross the blood-barrier stream.

We have reused the approach described in Section 4.4, and ran experiments
using the same machine and time/memory limits.

Results: Figure 10 shows the resulting cumulative runtimes for each of the
pipelines on a log-scale y-axis, and a boxplot of the time spent mining each pat-
tern for the fully decomposed and the semi decomposed pipelines. Our boxes
cover the data from the first quartile (Q1) to the third quartile (Q3), while the
whiskers extend to the last datum less than Q3 plus 1.5 times the interquartile
range (IQR). All other data points are considered outliers, and are plotted as in-
dividual dots. A horizontal dotted line indicates the median. For the Bloodbarr
datasets, no results for the monolithic pipeline could be given, as it exceeded the
memory limit of 8GB.

Focussing on the difference between the semi and fully decomposed
pipelines, all three datasets (Figure 10b) show a similar factor of two difference
in favor of the fully decomposed pipeline. The difference between the pipelines
that use oracles for the positive constraint on the one hand (the semi and fully
decomposed pipelines), and themonolithic pipeline on the other hand, suggests
that a large benefit can be achieved from using a separate oracle for the checking
phase.

Furthermore, the difference between the semi and fully decomposed
pipelines shows that the benefit of introducing oracles, at least in graph mining,
increases when we further introduce an oracle call for each independent graph.
Recall that the possibilities for decomposition in the graph mining case are found
by syntactical analysis; they correspond to second-order quantifications, and their
position in the hierarchy relative to each other and other, first-order quantifica-
tions. In fact, this is why we advocate the use of local quantifications, as opposed
to having to quantify all second-order symbols in the vocabulary. This syntactical
argument suggests that finding good decompositions for other problems based on
the presence of second-order quantifications is feasible.

In fact, the semi and fully decomposed strategies can mine 120 patterns
from the yoshida dataset in 1633 and 1255 seconds respectively. Likewise, for the
mutagenesis dataset, these strategies mine the 120 requested patterns in 1996 and
939 seconds respectively. While this is still an order of magnitude larger than
ASP, we note that in these experiments we focussed on how many oracles should
be introduced and where, and as a result, IDP must still repeatedly ground each
theory.

34 Matthias van der Hallen et al.

0 20 40 60 80 100 120
pattern #

101

102

103

se
co

nd
s

Cumulative time [Bloodbarr].
Fully Decomposed
Semi Decomposed

Fully Decomposed Semi Decomposed
0

25

50

75

100

125

150

175

200
Time needed for the next pattern.

(a) IDP results for the bloodbarr dataset, with N+=41.

0 20 40 60 80 100 120
pattern #

101

102

103

104

se
co

nd
s

Cumulative time [Mutagenesis].

Fully Decomposed
Semi Decomposed
Monolithic

Fully Decomposed Semi Decomposed
0

10

20

30

40

50

Time needed for the next pattern.

(b) IDP results for the mutagenesis dataset, with N+=23.

0 20 40 60 80 100 120
pattern #

101

102

103

104

se
co

nd
s

Cumulative time [Yoshida].
Fully Decomposed
Semi Decomposed
Monolithic

Fully Decomposed Semi Decomposed
0

10

20

30

40

50
Time needed for the next pattern.

(c) IDP results for the yoshida dataset, with N+=26.

Figure 10: Cumulative runtimes and time spent per pattern by IDP for the three
datasets with only positive examples.

5.2 Lazy Grounding

The third issue with higher-order encodings, as pointed out in Section 4, concerns
the data representation of sets of higher-order objects, such as graphs in the graph
mining problem. While the disjoint union technique proposed in Section 4 can
be used, even automating the rewrite so it is no hinderance for modellers, one
problem is that it tends to produce very large groundings. Furthermore, the earlier
introduced nested solvers technique results in a system that has to ground not
just the main theory, but also has to ground theories for every nested solver, while

Knowledge Representation Analysis of Graph Mining 35

retaining as many grounding optimization techniques as possible. This problem
could be mitigated by using the lazy grounding technique.

Lazy grounding is a technique where theories are only grounded partially: only
those parts of the theory that are relevant to finding a satisfying assignment are
grounded. The framework of de Cat et al. [10], for example, uses the concept of jus-
tifications to denote a way of generating a complete assignment for non-grounded
parts of the theory. It then suffices to ground parts only if it is not possible to
construct a justification for them anymore. An experimental algorithm for model
expansion with lazy grounding based on this framework has been implemented
within IDP.

Experiments: To get an indication of the impact of lazy grounding, we repeated
the experiments explained above while enabling lazy grounding for every IDP
call covering the ‘positive constraint checking’ phase. Note that in this case, the
disjoint union technique has already been applied manually. This would allow the
solver to defer the grounding of example graphs until they are necessary to satisfy
the positive constraint. In the ‘Ground and solve’ setup, the fully decomposed
pipeline is able to prevent grounding and solving some example graphs by eagerly
evaluating the aggregation and stopping as soon as the threshold is reached, giving
it a clear advantage over the semi decomposed pipeline, which has to ground the
entire problem first. When using lazy grounding, we expect the semi decomposed
pipeline to behave more like the fully decomposed pipeline, as it should be able
to bypass any grounding for unnecessary graphs.

Results: Figure 11 shows for each dataset a histogram of the time needed to mine
the next pattern for the semi decomposed and fully decomposed pipelines
with ground and search, and the semi decomposed pipeline with lazy grounding.
These figures show that the lazy grounding option actually causes a slowdown
for the semi decomposed pipeline, quite frequently needing significantly more
time to check a pattern, as evidenced by the long tail of the semi decomposed
pipeline with lazy grounding. Figure 12 shows, for the mutagenesis dataset, the
size of grounding as the number of literals (12a) and the memory usage of the semi
decomposed pipeline in kilobytes with and without lazy grounding (12b). While
Figure 12a shows that lazy grounding produces smaller groundings, Figure 12b
shows that the effective memory usage using lazy grounding, while in general
smaller, sometimes exceeds that of the default ground & solve option.

One possible cause for the apparent slowdown caused by the lazy grounding
option is the setup cost of lazy grounding, which can be high: When using lazy
grounding, additional data structures are required. Another possible factor is the
‘penalty’ incurred in the experimental implementation when lazy grounding has
to ground an additional graph, w.r.t eagerly grounding all patterns at the same
time. Further evidence for this factor can be found by noting that the slowdown
with lazy grounding is less dramatic for the mutagenesis and yoshida datasets.
From Figure 13, which shows a boxplot of the number of example graphs that
had to be inspected before accepting or refuting a pattern candidate for each
dataset4, we can conclude that these datasets are in some sense ‘easier’, as the
fully decomposed pipeline on average has to inspect fewer graphs per pattern
candidate for these datasets than for the bloodbarr dataset.

4 Numbers taken from runs of the fully decomposed pipeline.

36 Matthias van der Hallen et al.

0

50
Semi Decomposed Ground & Solve

0

50
Fully Decomposed Ground & Solve

0 100 200 300 400 500 600 700 800
0

50
Semi Decomposed Lazy Grounding

Time needed for the next pattern: bloodbarr

(a) Lazy grounding effects for IDP on the bloodbarr dataset, with
N+=41.

0

50

100
Semi Decomposed Ground & Solve

0

50

100
Fully Decomposed Ground & Solve

0 100 200 300 400 500 600 700 800
0

50

100
Semi Decomposed Lazy Grounding

Time needed for the next pattern: mutagenesis

(b) Lazy grounding effects for IDP on the mutagenesis dataset, made
strictly positive, with N+=23.

0

50

Semi Decomposed Ground & Solve

0

50

Fully Decomposed Ground & Solve

0 100 200 300 400 500 600 700 800
0

50

Semi Decomposed Lazy Grounding

Time needed for the next pattern: yoshida

(c) Lazy grounding effects for IDP on the yoshida dataset, with N+=26.

Figure 11: Histograms of time needed to mine the next pattern by IDP. Only
strictly positive datasets were used.

Knowledge Representation Analysis of Graph Mining 37

0 20 40 60 80 100 120
104

105

106

Grounding size Mutagenesis (# literals).

Semi Decomposed + Ground & Solve
Semi Decomposed + Lazy Grounding
Fully Decomposed + Ground & Solve

(a) Grounding size for pattern check in Mu-
tagenesis dataset, as number of literals.

0 20 40 60 80 100 120

105

2 × 105

3 × 105

Memory usage Mutagenesis (kilobytes).

Semi Decomposed + Ground & Solve
Semi Decomposed + Lazy Grounding

(b) Memory usage for pattern check in Mu-
tagenesis dataset, in kilobytes.

Figure 12: Grounding size (#lits) and memory usage (kilobytes) of Ground &
Solve and Lazy Grounding approaches in Mutagenesis dataset.

yoshida bloodbarr mutagenesis

50

100

150

200

250

300

350

400

of graphs inspected for pattern

Figure 13: Boxplot: # of example graphs inspected before accepting or refuting a
pattern candidate.

6 Conclusion

Graph mining is an increasingly important task within the realm of data mining.
It is being used in bioinformatics, chemoinformatics [40], circuit analysis and many
other fields. As shown in Section 2, it is easily defined mathematically. As Section 3
has shown, it is also possible to easily transform this mathematical definition into
a higher-order logic specification with great clarity. However, support for higher-
order logic specifications is limited in current state-of-the-art KR systems.

We specifically (Section 4) looked at how IDP and ASP, two state-of-the-art
KR languages, allow one to model the graph mining problem. The resulting first-
order encodings are not straightforwardly derived from the mathematical definition
of graph mining, and, relatedly, do not reach the same level of clarity or ease
of adaptation. Instead, several encoding techniques such as the disjoint union

38 Matthias van der Hallen et al.

technique and saturation technique are required to make the graph mining problem
expressible in these languages. Furthermore, it is not always possible to solve a
graph mining problem with a single solver call, limiting its compatibility with the
knowledge base paradigm. Instead, we must write procedural code which fixes the
flow of information and the inference(s) being used while writing the model.

Looking at these limitations, we have identified opportunities for adding sup-
port for higher-order logic to state-of-the-art KR systems such as IDP or ASP.
However, the expressiveness of higher-order logic in general raises concerns about
the performance of systems supporting higher-order logic. Nevertheless, we sug-
gested that in real-world applications, higher-order logic might open up new ways
for solvers to benefit from structure in problems, for example, through indepen-
dence analysis. Thus, in Section 5, we investigated two techniques for adding
higher-order logic support to KR systems, while paying attention to how they
might aid such independence analysis: The first technique, nested solvers, was
concerned with supporting universal quantification and local quantifications of
higher-order objects, while the second, lazy grounding, was mainly concerned with
issues surrounding data representation.

For nested solvers we experimented with an implementation in imperative code
that should mimic nested solvers in two different settings (fully decomposed and
semi decomposed) and have found that both settings hold a clear advantage over
the first-ordermonolithic setting. For lazy grounding we experimented with its
existing experimental implementation in IDP, turning it on for the semi decom-
posed setting. While we had thought that lazy grounding would bring the semi
decomposed setting closer to the fully decomposed setting, we actually found
that, in its current implementation, lazy grounding actually causes a slowdown.
It is clear that more research with respect to existing techniques and systems is
needed.

7 Future Work

The conclusions from the previous section motivate us to further explore ways
of introducing higher-order logic in existing state-of-the-art KR systems. In this
section, we identify three potential paths for going forward: (1) we build upon
the idea of nested solvers, implementing syntax based decomposition techniques
introducing stacks of subsolvers automatically, not only for graph mining but for
other higher-order logic specifications as well, (2) we ground to quantified Boolean
formulas (QBF) as an alternative approach to nested solvers, and/or (3) we further
explore lazy grounding. These last two paths are discussed in more detail.

7.1 Grounding to QBF

Existing state-of-the-art KR systems are commonly based on SAT solvers. One
other option to introduce higher-order support is by using Quantified Boolean
Formula or QBF solvers instead.

These solvers accept formulas of the form

∀x1∃x2∀x3 . . . Qnxn : φ(x1, x2, x3, . . . , xn)

Knowledge Representation Analysis of Graph Mining 39

where ∀x1∃x2∀x3 . . . Qnxn is called the quantifier prefix and φ(x1, x2, x3, . . . , xn)
represents an unquantified Boolean formula. To test the performance of a KR-
system based on a QBF solver, we would first implement a grounding system from
higher-order expressions to QBF formulas, making use of the fact that we can
ground quantification over a predicate by quantifying over the ground atoms rep-
resenting the predicate. Currently, work towards a grounding system from higher-
order expressions to QBF formulas has started, and recently, results of a prototype
system supporting second order quantification, arithmetic and constraints have
been published [22].

We can then use existing QBF solvers to solve the resulting ground formulas. By
employing a solver which uses a dependency learning technique [37], it is possible
to solve these formulas by assigning atoms a value without taking into account
their order in the quantifier prefix.

Such a system can derive a set of independencies using the same syntactical
analysis of the higher-order specification proposed earlier. Then, instead of start-
ing with the empty set, these derived dependencies can be used to bootstrap a
QBF solver supporting dependency learning [37] (e.g. DepQBF).This way, we can
again leverage additional independencies evident in the higher-order specification
while possibly deriving more, perhaps otherwise unidentified dependencies on the
propositional level.

7.2 Lazy Grounding

As mentioned in Section 5.2, we expected that enabling lazy grounding for the
semi decomposed pipeline would prevent the grounding and solving of some
of the example graphs, and that, as a result, the semi decomposed pipeline
would achieve results very close to the fully decomposed pipeline. Instead, our
experiments showed an overall slowdown of the semi decomposed pipeline when
using lazy grounding. Possible explanations are a high setup cost for the general
method of lazy grounding or a high penalty being incurred every time an additional
graph has to be grounded.

Metrics such as the ‘hardness’ of each dataset, which expresses how many
example graphs on average are needed to accept or refute a pattern candidate,
can give some indication towards the cause of the overall slowdown. However, for
a detailed analysis changes to both the experiments as well as the lazy grounding
implementation are needed.

It is important to note that other approaches exist to implement lazy ground-
ing [12,41] in ASP, for example lazy constraints, where a set of constraints C is
identified which causes large grounding. This set C is not grounded, instead, a solu-
tion candidate is generated without it and this solution candidate is subsequently
checked w.r.t. the constraints in C. If any of the constraints in C is violated, a
(ground) conflict is learned. We remark that this is similar to the way that the
semi and fully decomposed pipelines split candidate generation from checking
the positive (and negative) constraints. As such, we would expect that a good
implementation of this technique would indeed show similar performance gains as
the introduction of these pipelines, without the need of procedural code, and this
can be the target of future research.

40 Matthias van der Hallen et al.

Acknowledgements

We would like to thank the reviewers for their insightful and helpful comments,
thanks to which many improvements could be made.

References

1. Abramson, H., Rogers, H.: Meta-programming in Logic Programming. MIT Press (1989)
2. Abrial, J.R.: The B-Book. Cambridge University Press (1996). DOI 10.1017/

CBO9780511624162
3. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge Univer-

sity Press (2010)
4. Aoga, J.O.R., Guns, T., Schaus, P.: An efficient algorithm for mining frequent sequence

with constraint programming. In: P. Frasconi, N. Landwehr, G. Manco, J. Vreeken (eds.)
Machine Learning and Knowledge Discovery in Databases - European Conference, ECML
PKDD 2016, Riva del Garda, Italy, September 19-23, 2016, Proceedings, Part II, Lec-
ture Notes in Computer Science, vol. 9852, pp. 315–330. Springer (2016). DOI 10.1007/
978-3-319-46227-1_20. URL https://doi.org/10.1007/978-3-319-46227-1_20

5. Babai, L.: Graph isomorphism in quasipolynomial time. CoRR abs/1512.03547 (2015).
URL http://arxiv.org/abs/1512.03547

6. Bogaerts, B., Janhunen, T., Tasharrofi, S.: Solving QBF instances with nested SAT solvers.
In: A. Darwiche (ed.) Beyond NP, Papers from the 2016 AAAI Workshop, Phoenix, Ari-
zona, USA, February 12, 2016., AAAI Workshops, vol. WS-16-05. AAAI Press (2016).
URL http://www.aaai.org/ocs/index.php/WS/AAAIW16/paper/view/12603

7. Bowen, J.P.: Formal Specification and Documentation using Z. International Thomson
Computer Press (1996)

8. Brewka, G., Delgrande, J.P., Romero, J., Schaub, T.: asprin: Customizing answer set
preferences without a headache. In: AAAI, pp. 1467–1474. AAAI Press (2015)

9. Bruynooghe, M., Blockeel, H., Bogaerts, B., de Cat, B., Pooter, S.D., Jansen, J.,
Labarre, A., Ramon, J., Denecker, M., Verwer, S.: Predicate logic as a modeling lan-
guage: modeling and solving some machine learning and data mining problems with
IDP3. Theory and Practice of Logic Programming (TPLP) 15(6), 783–817 (2015). DOI
10.1017/S147106841400009X. URL https://doi.org/10.1017/S147106841400009X

10. de Cat, B., Denecker, M., Bruynooghe, M., Stuckey, P.J.: Lazy model expansion: Interleav-
ing grounding with search. J. Artif. Intell. Res. 52, 235–286 (2015). DOI 10.1613/jair.4591.
URL https://doi.org/10.1613/jair.4591

11. Chen, W., Kifer, M., Warren, D.S.: Hilog: A foundation for higher-order logic program-
ming. The Journal of Logic Programming 15(3), 187–230 (1993)

12. Cuteri, B., Dodaro, C., Ricca, F., Schüller, P.: Constraints, lazy constraints, or propagators
in ASP solving: An empirical analysis. Theory and Practice of Logic Programming (TPLP)
17(5-6), 780–799 (2017)

13. Dasseville, I., van der Hallen, M., Janssens, G., Denecker, M.: Semantics of templates in a
compositional framework for building logics. Theory and Practice of Logic Programming
(TPLP) 15(4-5), 681–695 (2015). DOI 10.1017/S1471068415000319. URL https://doi.
org/10.1017/S1471068415000319

14. De Cat, B., Bogaerts, B., Bruynooghe, M., Janssens, G., Denecker, M.: Predicate logic as
a modelling language: The IDP system. CoRR abs/1401.6312v2 (2016). URL http:
//arxiv.org/abs/1401.6312v2

15. De Raedt, L., Guns, T., Nijssen, S.: Constraint programming for itemset mining. In: ACM
SIGKDD, pp. 204–212 (2008)

16. Eiter, T., Fink, M., Ianni, G., Krennwallner, T., Redl, C., Schüller, P.: A model building
framework for answer set programming with external computations. Theory and Practice
of Logic Programming (TPLP) 16(4), 418–464 (2016)

17. Eiter, T., Ianni, G., Krennwallner, T.: Answer set programming: A primer. In: Reasoning
Web, Lecture Notes in Computer Science, vol. 5689, pp. 40–110. Springer (2009)

18. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in Practice.
Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan and Claypool
Publishers (2012)

https://doi.org/10.1007/978-3-319-46227-1_20
http://arxiv.org/abs/1512.03547
http://www.aaai.org/ocs/index.php/WS/AAAIW16/paper/view/12603
https://doi.org/10.1017/S147106841400009X
https://doi.org/10.1613/jair.4591
https://doi.org/10.1017/S1471068415000319
https://doi.org/10.1017/S1471068415000319
http://arxiv.org/abs/1401.6312v2
http://arxiv.org/abs/1401.6312v2

Knowledge Representation Analysis of Graph Mining 41

19. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Clingo = ASP + control: Prelimi-
nary report. CoRR abs/1405.3694 (2014)

20. Gebser, M., Kaufmann, B., Schaub, T.: Solution enumeration for projected boolean search
problems. In: Constraint Programming, Artificial Intelligence and Operations Research
(CPAIOR), Lecture Notes in Computer Science, vol. 5547, pp. 71–86. Springer (2009)

21. Guyet, T., Moinard, Y., Quiniou, R., Schaub, T.: Efficiency Analysis of ASP Encod-
ings for Sequential Pattern Mining Tasks, pp. 41–81. Springer International Publish-
ing, Cham (2018). DOI 10.1007/978-3-319-65406-5_3. URL https://doi.org/10.1007/
978-3-319-65406-5_3

22. van der Hallen, M., Janssens, G.: A grounder from second-order logic to qbf. In: Quantified
Boolean Formulas, Papers from the 2018 FLoC Quantified Boolean Formulas and Beyond
Workshop, Oxford, England, July 8, 2018 (accepted), Federated Logic Conference (FLoC):
workshop proceedings (2018)

23. van der Hallen, M., Paramonov, S., Leuschel, M., Janssens, G.: Knowledge representation
analysis of graph mining. CoRR abs/1608.08956 (2016). URL http://arxiv.org/abs/
1608.08956

24. Immerman, N.: Descriptive complexity and model checking. In: V. Arvind, R. Ramanujam
(eds.) Foundations of Software Technology and Theoretical Computer Science, 18th Con-
ference, Chennai, India, December 17-19, 1998, Proceedings, Lecture Notes in Computer
Science, vol. 1530, pp. 1–5. Springer (1998). DOI 10.1007/978-3-540-49382-2_1. URL
https://doi.org/10.1007/978-3-540-49382-2_1

25. Järvisalo, M.: Itemset mining as a challenge application for answer set enumeration. Logic
Programming and Nonmonotonic Reasoning (LPNMR), pp. 304–310 (2011)

26. Kaufmann, B., Leone, N., Perri, S., Schaub, T.: Grounding and solving in answer set
programming. AI Magazine 37(3), 25–32 (2016). URL http://www.aaai.org/ojs/index.
php/aimagazine/article/view/2672

27. Kemmar, A., Lebbah, Y., Loudni, S., Boizumault, P., Charnois, T.: Prefix-projection
global constraint and top-k approach for sequential pattern mining. Constraints 22(2),
265–306 (2017). DOI 10.1007/s10601-016-9252-z. URL https://doi.org/10.1007/
s10601-016-9252-z

28. Lamport, L.: Specifying Systems, The TLA+ Language and Tools for Hardware and Soft-
ware Engineers. Addison-Wesley (2002)

29. Leuschel, M., Butler, M.J.: ProB: An automated analysis toolset for the B method. STTT
10(2), 185–203 (2008)

30. Li, H., Yap, C.W., Ung, C.Y., Xue, Y., Cao, Z.W., Chen, Y.Z.: Effect of selection of
molecular descriptors on the prediction of bloodbrain barrier penetrating and nonpen-
etrating agents by statistical learning methods. Journal of Chemical Information and
Modeling 45(5), 1376–1384 (2005). DOI 10.1021/ci050135u. URL https://doi.org/10.
1021/ci050135u. PMID: 16180914

31. Lonsing, F., Biere, A.: Depqbf: A dependency-aware QBF solver. JSAT 7(2-3), 71–76
(2010). URL http://jsat.ewi.tudelft.nl/content/volume7/JSAT7_6_Lonsing.pdf

32. Lonsing, F., Egly, U., Gelder, A.V.: Efficient clause learning for quantified boolean for-
mulas via QBF pseudo unit propagation. In: M. Järvisalo, A.V. Gelder (eds.) The-
ory and Applications of Satisfiability Testing - SAT 2013 - 16th International Confer-
ence, Helsinki, Finland, July 8-12, 2013. Proceedings, Lecture Notes in Computer Sci-
ence, vol. 7962, pp. 100–115. Springer (2013). DOI 10.1007/978-3-642-39071-5_9. URL
https://doi.org/10.1007/978-3-642-39071-5_9

33. McCarthy, J.: Elaboration tolerance. In: Working Papers of the Fourth International
Symposium on Logical formalizations of Commonsense Reasoning, Commonsense-1998
(1998)

34. Muggleton, S., Raedt, L.D.: Inductive logic programming: Theory and methods. J. Log.
Program. 19/20, 629–679 (1994). DOI 10.1016/0743-1066(94)90035-3. URL https://
doi.org/10.1016/0743-1066(94)90035-3

35. Nijssen, S., Kok, J.N.: Frequent graph mining and its application to molecular databases.
In: Proceedings of the IEEE International Conference on Systems, Man & Cybernetics:
The Hague, Netherlands, 10-13 October 2004, pp. 4571–4577. IEEE (2004). DOI 10.1109/
ICSMC.2004.1401252. URL https://doi.org/10.1109/ICSMC.2004.1401252

36. Paramonov, S., Chen, T., Guns, T.: Generic mining of condensed pattern representations
under constraints. In: CEUR: Young Scientist‘s Second International Workshop on Trends
in Information Processing Proceedings (YSIP), vol. 1837, pp. 138–177 (2017)

https://doi.org/10.1007/978-3-319-65406-5_3
https://doi.org/10.1007/978-3-319-65406-5_3
http://arxiv.org/abs/1608.08956
http://arxiv.org/abs/1608.08956
https://doi.org/10.1007/978-3-540-49382-2_1
http://www.aaai.org/ojs/index.php/aimagazine/article/view/2672
http://www.aaai.org/ojs/index.php/aimagazine/article/view/2672
https://doi.org/10.1007/s10601-016-9252-z
https://doi.org/10.1007/s10601-016-9252-z
https://doi.org/10.1021/ci050135u
https://doi.org/10.1021/ci050135u
http://jsat.ewi.tudelft.nl/content/volume7/JSAT7_6_Lonsing.pdf
https://doi.org/10.1007/978-3-642-39071-5_9
https://doi.org/10.1016/0743-1066(94)90035-3
https://doi.org/10.1016/0743-1066(94)90035-3
https://doi.org/10.1109/ICSMC.2004.1401252

42 Matthias van der Hallen et al.

37. Peitl, T., Slivovsky, F., Szeider, S.: Dependency learning for QBF. In: S. Gaspers, T. Walsh
(eds.) Theory and Applications of Satisfiability Testing - SAT 2017 - 20th International
Conference, Melbourne, VIC, Australia, August 28 - September 1, 2017, Proceedings,
Lecture Notes in Computer Science, vol. 10491, pp. 298–313. Springer (2017). DOI
10.1007/978-3-319-66263-3_19

38. Rückert, U., Kramer, S.: Optimizing feature sets for structured data. In: J.N. Kok,
J. Koronacki, R.L. de Mántaras, S. Matwin, D. Mladenic, A. Skowron (eds.) Ma-
chine Learning: ECML 2007, 18th European Conference on Machine Learning, War-
saw, Poland, September 17-21, 2007, Proceedings, Lecture Notes in Computer Science,
vol. 4701, pp. 716–723. Springer (2007). DOI 10.1007/978-3-540-74958-5_72. URL
https://doi.org/10.1007/978-3-540-74958-5_72

39. Silva, J.P.M., Sakallah, K.A.: GRASP - a new search algorithm for satisfiability. In:
International Conference on Computer-Aided Design (ICCAD), San Jose, California, USA,
November 10-14 1996, pp. 220–227 (1996)

40. Takigawa, I., Mamitsuka, H.: Graph mining: procedure, application to drug discovery and
recent advances. Drug Discovery Today 18(1), 50 – 57 (2013). DOI https://doi.org/
10.1016/j.drudis.2012.07.016. URL http://www.sciencedirect.com/science/article/
pii/S1359644612002759

41. Weinzierl, A.: Blending lazy-grounding and CDNL search for answer-set solving. In: Logic
Programming and Nonmonotonic Reasoning (LPNMR), Lecture Notes in Computer Sci-
ence, vol. 10377, pp. 191–204. Springer (2017)

42. Yan, X., Han, J.: gspan: Graph-based substructure pattern mining. In: Proceedings of
the 2002 IEEE International Conference on Data Mining, ICDM ’02, pp. 721–. IEEE
Computer Society, Washington, DC, USA (2002)

https://doi.org/10.1007/978-3-540-74958-5_72
http://www.sciencedirect.com/science/article/pii/S1359644612002759
http://www.sciencedirect.com/science/article/pii/S1359644612002759

	Introduction
	Formalization of graph mining
	A higher-order specification of Graph Mining
	First-order encodings of Graph Mining
	Solver Techniques
	Conclusion
	Future Work

